Net-Centric Implementation

Part 5: Developer Guidance

v3.3.0
11 October 2011

ac Enter, Net-Centric Enterprise Solutions for Interoperability (NESI) is a collaborative
S activity of the USN PEO for C4l and Space, the USAF Electronic Systems
/-A' i Center, and the Defense Information Systems Agency.
E—t Approved for public release; distribution is unlimited.
a2

SSIC: 3093.4

e o
ﬁ"«'f:}.i it *

NESI-X Subdocument generated using: View, Part 5: Developer Guidance

Generated: Wed Oct 26 13:37:08 PDT 2011
NESI-X Version: v2.9.6 build 7130 - 2011/09/22 09:41

Table of Contents

PEISPECIIVES ..o 6
NESI EXECULIVE SUMIMAIY ..ottt ettt et e e oo e ettt et e e e e e e e e e s bbb be e e eeeaaeaeeesaaannnsbnenees 6
Part 5: DeVElOPEr GUILANCEooiiiiiiiiiiiiiiiie ettt e st e e e sttt e e e e sbb et e e e s sabbeeeeeanbreeeesanes 8

Implement a Component-Based ArChiteCtUIEcoocuiiiiiiiiiii e 9
PUDIIC INTEIfACE DESIGN ..ottt e e e e e e e e s s bbb e e e e e e e e e e e e e e anneenes 10
Standard Interface DOCUMENTALIONcooiiiiiiiiiiiiiiie et 11
Automate the Software BUild PrOCESScociiiiiiiiiiiiieie e 12
Programming LANQUAGOEScooouuiiiiiiiiiaia ettt e e e e e et e e bbbt e e e e e e e e e s e e snnbbebeeeeaaaaaeeaeaannnnne 13
L P PEERRRR 14
C++ Namespaces and MOUUIEScoovvieeeiiiiiciee e e e e e e rereaaee s 15

CH+ Operator OVEIIOAINGcooiiiiiiiiiiie ittt e e e e e e e e r e e e e e e e e e e e e annbbbaeeeeeas 16

CHt HEAAET FIlES ..o 17

R | PP PP PP 18
VHDL CodiNg @nd DESIGNooiiiiiiiiiiieeie ettt e e e e e e e e e e e annbbabeeeaaaaaeas 19
VHDL TESIDENCR ...eiiiiiiiii et e e 20
VHDL Synthesizable DEeSIQNccccuuiiiiiiiiiiie et e e e e e e e e e e e eeeee s 21
VHDL SYNChroNOUS DESIONuuieiiiiiiiiiiieeeiee ettt e e e e e e e s e s abae e aeeaaaaaeeas 22
SOMIWAIE SECUILY ...eeeiiiiiiieie ettt e e bt e e ettt e e s s et b e e e e s anbb e e e e e b e e e e e ennee 23
Technologies and Standards for Implementing Software Securitycccccccvveeeeeeiiiiicciiiveeeee, 24
Public Key Infrastructure (PKI) and PK Enable Applicationsccccooiiiiiiiiiiiiiiiiiennnnns 25

KEY MANAGEIMENTeiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e eeeeenarararanes 26
Certificate PrOCESSING ..vveeiiiiieeiie ittt e e e s e s r e e e e e e s e s s e eeeraaaeeessssnnnsrnrareeeaeeeas 27
SMAIT CArd LOGON ..ottt ettt e e ettt e et e e e e e e e e e s bbbt e e e e e eeaaaeeeeaaannas 29

XML Digital SIGNALUIESeeiiiiiiiiiiie ittt e ekt e e e s sbb e e e e st be e e e s abbeeeeeeaaes 30

L g Tod Y o110 g IS =T AV o Y R 32
SOAP SECUIMLY eiieeiii ittt ettt et e e e e e e oo bbb ettt e e aa e e e e e aaaba bbb eeeeeaeaeeeeaaannnnbereees 33
Security Assertion Markup Language (SAML)c.euviiiiiiiiie e 35
21 IS T= o U | PSR 36

LDAP SECUIMLY ieeeeiiiiiitttt ettt ettt et e e e e e o e kb bttt et e e e e e e s e e e anbbbbb e e e e eeaeaesesaaannnbeeneees 37

[N Y= T o1 U [] PSR 38

Application RESOUICE SECUIMLYooiiiiiiiiiiieiie ettt e e e e e e e e e s e bebbeeeeeas 39
JAVA SECUIMLY .eeeiieie ittt ettt ettt e e ekttt e s s bbb et e e s abb et e e e saabb e e e e s annnneee s 40
Policies and Processes for Implementing Software SECUritycooeeccvvviiieieie e, 41
Secure Coding and Implementation PractiCes ...t 42
Apply Principle of Least PrivIlEgeoooiiiiiiii e 43
Practice Defense in DEPLN ... —————— 44
Apply Secure Coding StanNdardsooooiiiiiiiiiiiiie s 45
Apply Quality Assurance to Software Developmentccocoeevveieiiiee e 46
V2= 1o F= L (=T V] oV PP 47

Heed Compiler WANINGScoooiiiiiee ettt a e e e e e e e e e e e e e aans 48
HANAIE EXCEPLIONS ...ceiiiiiiiiiieiiie ettt ettt et e e e e e s e e ns 49

Data @t RESEoiiiiiiii 50
MODIIE COAE ...ttt e s et e e s e e e e e et e e s e e 51
[0 | = PP 54
D PP 56
KIMIL SYNEAX ettt et e e e ettt ettt ettt ettt e o s oo oo 22 e e e e e e aeaeeeeeeeeeeanbebnbn bt nbnn e e an 57
XML SEIMANTICS ..iteiieeei ittt ettt e et e e e sttt e e e s bbbt e e e s aabb et e e e s abbbeeeesanbbeeeeesaan 58
XML SChema DOCUMENESeiiiiiieiiiieiiiee ettt ettt n e n e senee e 59
UsSiNg XML SUBDSHLULION GIOUPS ...eeeieiiieaaeiiiiiititiee et e e e e et e e e e e e e e e e s enneeeeees 60

DefiNiNG XML TYPES ..ooiiiiiiiieee ittt ettt et e e et e e e e abbeeeeesaae 61

XML SCNEMA FIES ...eeiiiiiiiiii ettt 62

USING XML NBMESPACES ...eeveeeiiiiaaaaaeiiiiiitiiiee ittt e e e e e e s e sttt e e e e e e e e e e s s s anbnbbeaeeeaaaaaaeas 63

Defining XML SCREMES ...coiiiiiiiiiiiiiee ettt e 64
Versioning XML SCREMASuvviiiiiiiie it eeaa s 65

XML INStaNCe DOCUMENLSuviiiiiiiiiiiee it 66

XML PFOCESSING .ittiieeeiiitiiee ettt ettt e ekttt e e ettt e e s s bbb e e e e aabb et e e e abbeeeeesanbbeeeeennes 67
D= o PSPPSR 68
D651 I PP PP P PP PTPRTRTRN 69
PArSING XML .ottt e et e e e et e e e s 71

XML VAIHALION .ttt sb e e e e e es 72

Metadata REGISIIYcooiiiieti ettt e e e e e e e e e s bbb b e e e e e e e e e e e e s e e annnaeaeees 73

[= (= B 1Y Fo o [=1 [TV [PSRRI 76

1= r=To = = L PP P PP PP PPPRPPI 79
Relational Database Management SYSIEIMScccoiiiiiiiiiiiiiie e 81
L6 =T g 101 (=14 7= 1ol =2 SO PSP PSP PU PP OPPPPUPRPTRRN 83
HUMaN-CompPuter INTEIACTIONeiiiiiiiiiiii ittt et e e e e e e s e s e e e e e e e e e e s eaaanas 84
Designing User Interfaces for Internationalizationcccciiiiieiiiiiiiiee e 86
Designing User Interfaces for ACCesSIbIlityccuvvvviiiiiieeiiiiiiceee e 87
Human Factor Considerations for Web-Based User Interfacescccccovcveveeiiiiienennnnnn 88
Browser-Based ClIENLScoiiiiiiiiiiiiiee ettt e et e e e rbb e e e e 91
DAY 1 = =T T [T o P PPPRRRRRR 92
Active Server Pages (ClasSIC ASP) ...ttt 93
Active Server Pages for .NET (ASP.NET) ...ccuuiiiiiiiiiie et 94
JaAVASEIVEr PAJES (JSP) ..uiiiiiiiiiiiiii ettt s e e e e e e e e e s s e e r e e e e e e e e e e aaaaae 95
WED POMTAIS ..ottt et e s et e e s e e e e e rn e e e e 96
SEYIE SNEELS . 97
THICK CHENTS .ottt et s et s et e e b e e s be e e s sbb e e e nnne e e nnneeee 98
[T [o | =7 T ¢ OO PP PPTPPPPTPRPPRPRN 99
LS EST= Vo [o To [P PPPR PP PRT 100
Message-Oriented Middleware (MOM)uuiiiiiiieeeiii e e e e e e e e eannes 101
Data Distribution SEIVICE (DDS)uuiiiiiiiiiaiaiii ittt e e e e e e e e e ennbebeeeee s 103
Decoupling Using DDS and Publish-Subscribecccooiiiiiiiiiieee e 108

DDS QUALILY Of SEIVICE .oovviiiiieii ittt e e e e e e e s e eaaranaeees 109

DDS Data-Centric Publish-Subscribe (DCPS)ccoeiiiiiiiiiiiiieieeeeeeeeeieeeee 111

DDS Domains - Global Data SPACEScccovuuiiiiiiiiiiiiee ittt 113
Reading/Writing Objects within @ DDS DOMaINcvvviviiieeeiiiiiiiiiiiieieeee e 115
Messaging within @ DDS DOMAINcoooiiiiiiiiiiiiiieeie e 117

DDS Data Local Reconstruction Layer (DLRL)occuveiiiiiiiiiieiiiieee e 118
Messaging With MSMQ ... e e e e e e s e e e e e aaeaa e 119
WWED SEIVICES ...iiiiiiiitiiie ettt ettt e e e skt e e e e st e e e e e e aab b et e e e st be e e e e s anbneeeeeanes 120
ST N SRR 122
Web Services COMPLIANCEcccuiiiiiiiiieie e e e e e e e e s e e eeaeeeas 125

INSUIALION AN STUCTUIE ..ottt 128

Universal Description, Discovery, and Integration (UDDI)cccovvieiniiiiieniniieeee e 129

Service Definition FrameWOrKoccuviiiiiiiiiii e 130

Enterprise ServiCe BUS (ESB)uuiiiiiiiiiiaa ittt a e e e e 136
Software Communication ArChitECIUIEcoiiiiiiiiiii e 139

COR B A e e e e e et et e et e e n s 140

INET FRAMEWOTK ..ttt et e e e et e e e s b e e e e st e e e e e e nbe e e e e e nnnes 142

Java EE Deployment DESCHPIONScoiueiiiiiiiiiiiie ittt ettt et et e e s e 144

Source Code Migration to Support IPV4 and IPV6cccccuviiiiiiiee e 146
oo To 11T HR PP PP TP TR 151
Guidance and Best Practice Details ..., 162
GIOSSAIY oo 645

RETEICINCES ...ttt et e e e ettt 697

Part 5: Developer Guidance

P1117: NESI Executive Summary

Net-Centric Enterprise Solutions for Interoperability (NESI) provides actionable guidance for acquiring net-centric
solutions that meet DoD Network Centric Warfare goals. The concepts in various directives, policies and mandates,
such as those included in the References section of this perspective, are the basis of NESI guidance. The NESI Net-
Centric Implementation documentation does the following: addresses architecture, design and implementation; provides
compliance checklists; and includes a collaboration environment with a repository.

NESI is a body of architectural and engineering knowledge that helps guide the design, implementation, maintenance,
evolution, and use of Information Technology (IT) in net-centric solutions for military application. NESI provides specific
technical recommendations that a DoD organization can use as references. NESI serves in many areas as a reference
set of compliant instantiations of DoD directives, policies and mandates.

NESI is derived from a studied examination of enterprise-level needs and from the collective practical experience of
recent and on-going program-level implementations. NESI is based on current and emergent technologies and describes
the practical experience of system developers within the context of a minimal top-down technical framework. NESI
guidance strives to be consistent with commercial best practices in the area of enterprise computing and IT.

NESI applies to all phases of the acquisition process as defined in DoD Directive 5000.1 [R1164] and DoD Instruction
5000.2; [R1165] NESI provides explicit guidance for implementing net-centricity in new acquisitions and for migrating legacy
systems to greater degrees of net-centricity.

NESI subsumes a number of references and directives; in particular, the Air Force C2 Enterprise Technical Reference
Architecture (C2ERA) and the Navy Reusable Applications Integration and Development Standards (RAPIDS). Initial
authority for NESI is per the Memorandum of Agreement between Commander, Space and Naval Warfare Systems
Command (SPAWAR); Navy Program Executive Officer, C4l & Space (now PEO C4l); and the United States Air Force
Electronic Systems Center (ESC), dated 22 December 2003, Subject: Cooperation Agreement for Net-Centric Solutions
for Interoperability (NESI). The Defense Information Systems Agency (DISA) formally joined the NESI effort in 2006.

Perspectives NESI Perspectives describe a topic and encompass related, more specific Perspectives
or encapsulate a set of Guidance and Best Practice details, Examples, References, and
Glossary entries that pertain to the topic.

Guidance NESI Guidance is in the form of atomic, succinct, absolute and definitive Statements related
to one or more Perspectives. Each Guidance Statement is linked to Guidance Details which
provide Rationale, relationships with other Guidance or Best Practices, and Evaluation
Criteria with one or more Tests, Procedures and Examples which facilitate validation of using
the Guidance through observation, measurement or other means. Guidance Statements are
intended to be binding in nature, especially if used as part of a Statement of Work (SOW) or
performance specification.

Best Practices NESI Best Practices are advisory in nature to assist program or project managers and
personnel. Best Practice Details can have all the same parts as NESI Guidance. The use of
NESI Best Practices are at the discretion of the program or project manager.

Examples NESI Examples illustrate key aspects of Perspectives, Guidance, or Best Practices.

Glossary NESI Glossary entries provide terms, acronyms, and definitions used in the context of NESI
Perspectives, Guidance and Best Practices.

References NESI References identify directives, instructions, books, Web sites, and other sources of
information useful for planning or execution.

Releasability Statement

NESI Net-Centric Implementation v3.3 is cleared for public release by competent authority in accordance with DoD
Directive 5230.9; [R1232] Distribution Statement A: Approved for public release; distribution is unlimited applies to
the documentation set. Obtain electronic copies of this document at http://nesipublic.spawar.navy.mil.

Page 6

http://nesipublic.spawar.navy.mil

Part 5: Developer Guidance

Vendor Neutrality

NESI documentation sometimes refers to specific vendors and their products in the context of examples and lists.
However, NESI is vendor-neutral. Mentioning a vendor or product is not intended as an endorsement, nor is a
lack of mention intended as a lack of endorsement. Code examples typically use open-source products since
NESI is built on the open-source philosophy. NESI accepts inputs from multiple sources so the examples tend

to reflect contributor preferences. Any products described in examples are not necessarily the best choice for
every circumstance. Users are encouraged to analyze specific project requirements and choose tools accordingly.
There is no need to obtain, or ask contractors to obtain, the tools that appear as examples in this guide. Any lists
of products or vendors are intended only as examples, not as a list of recommended or mandated options.

Disclaimer

Every effort has been made to make NESI documentation as complete and accurate as possible. Even with
frequent updates, this documentation may not always immediately reflect the latest technology or guidance. Also,
references and links to external material are as accurate as possible; however, they are subject to change or may
have additional access requirements such as Public Key Infrastructure (PKI) certificates, Common Access Card
(CAC) for user identification, and user account registration.

Contributions and Comments

NESI is an open project that involves the entire development community. Anyone is welcome to contribute
comments, corrections, or relevant knowledge to the guides via the Change Request tab on the NESI Public site,
http://nesipublic.spawar.navy.mil, or via the following email address: nesi@spawar.navy.mil.

Page 7

http://nesipublic.spawar.navy.mil

Part 5: Developer Guidance

P1118: Part 5: Developer Guidance

Part 5: Developer Guidance provides program managers, engineers and software developers detailed implementation
guidance for applications, services, and data. This effort leverages current best practices from the software development
community to enable the Department of Defense (DoD) to create net-centric, extensible and scalable enterprise
solutions. The goal is to modernize and improve the development of net-centric applications and services as

critical warfighter capabilities. The standards, policies, and processes within Part 5 are useful for building and
maintaining applications and services that must interoperate in the DoD Net-Centric Enterprise.

Part 5 provides software development and architecture guidance, best coding practices, lessons learned, and guidance.
It serves as a reference resource in support of specific topics, not a document to read in a sequential, linear fashion. The
guidance in Part 5 is useful in a variety of ways including the following:

e Supporting modular software development to minimize risk and impacts of changes to application developers

» Migrating legacy systems to the net-centric environment (in conjunction with Part 3: Migration Guidance [P1198])

» Implementing connection strategies that extend the life and reach of legacy applications while legacy application
developers restructure their systems

» Evaluating software deliverables for net-centricity and interoperability

Detailed Perspectives

« Implement a Component-Based Architecture [P1034]
< Public Interface Design [P1060]

e Standard Interface Documentation [P1069]

e Automate the Software Build Process [P1007]

e Programming Languages [P1113]

» Software Security [P1065]

o Data [P1012]

e User Interfaces [P1058]

e Middleware [P1052]

« Source Code Migration to Support IPv4 and IPv6 [P1396]
* Logging [P1448]

Page 8

https://nesi.spawar.navy.mil/nesix//View/P1198

Part 5: Developer Guidance
Part 5: Developer Guidance > Implement a Component-Based Architecture

P1034: Implement a Component-Based Architecture

The Federation of Government Information Processing Councils/Industry Advisory Council (FGIPC/IAC) defined
Component-Based Architecture (CBA) as follows in a March 2003 paper titled Succeeding with "Component-Based
Architecture in e-Government":

"An architecture process that enables the design of enterprise solutions using pre-manufactured components. The focus
of the architecture may be a specific project or the entire enterprise. This architecture provides a plan of what needs to be
built and an overview of what has been built already.” [Succeeding with Component-Based Architecture]

CBA represents a shift from the traditional, custom-development-oriented, "design, code, and test" approach that has
been used throughout the DoD in the past to a more business-oriented "architect, acquire, and assemble" approach.

The custom-development approach has been successful in building many systems. However, the integration, evolution,
reuse and cost of these systems have presented a problem. Consequently, these custom-developed systems have been
labeled as archaic stovepipes that can not plug-and-play with other systems.

CBA promises benefits such as shorter time to market, lower risk, and modular and adaptive systems.

The core of CBA is components. The NESI definition of the term component is that it is one of the parts that make up
a system; a component may be hardware or software and may be subdivided into other components. The following
guidance statements capture the essence of components.

Guidance
» (G1011: Make components independently deployable.

* (G1012: Use a set of services to expose component functionality.

* G1217: Develop and use externally configurable components.

Page 9

http://www.enterprise-architecture.info/Images/Documents/030403_Succeeding_with_Component-Based_Architecture_in_e_Government.pdf

Part 5: Developer Guidance
Part 5: Developer Guidance > Public Interface Design

P1060: Public Interface Design

A public interface is the logical point at which independent software entities interact. The entities may interact with

each other within a single computer, across a network, or across a variety of other topologies. It is important that public
interfaces be stable and designed to support future changes, enhancements, and deprecation in order for the interaction
to continue.

11007

Guidance
e (G1001: Use formal standards to define public interfaces.
» (G1002: Separate public interfaces from implementation.
» (G1003: Separate shared Application Programming Interfaces (APIs) from internal APIs.
* (G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

» (1008: Isolate the Web service portlet from web hosting infrastructure dependencies by using the Web Services
for Remote Portlets (WSRP) Specification protocol.

e (1010: Use a logging facade that allows for specifying the underlying logging framework during software
deployment.

e (1018: Assign version identifiers to all public interfaces.

e (G1019: Deprecate public interfaces in accordance with a published deprecation policy.

* (G1022: Insulate public interfaces from compile-time dependencies.

* (G1073: Isolate vendor extensions to enterprise service interfaces.

» (1208: Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.
e (G1213: Provide an architecture design document.

e G1214: Provide a document with a plan for deprecating obsolete interfaces.

» (G1215: Provide a coding standards document.

» (G1216: Provide a software release plan document.

Best Practices
» BP1007: Develop software using open standard Application Programming Interfaces (APIS).
e BP1021: Create fully encapsulated classes.
» BP1240: Present complete and coherent sets of concepts to the user.
» BP1241: Design statically typed interfaces.
* BP1242: Minimize an interface's dependencies on other interfaces.
* BP1243: Express interfaces in terms of application-level types.

Page 10

Part 5: Developer Guidance
Part 5: Developer Guidance > Standard Interface Documentation

P1069: Standard Interface Documentation

This section provides guidance for documenting source code. The references provide links on documenting code for the
Java and the Microsoft .NET environments. For all other languages, configuration files, and XML files, please follow the
associated language-specified format for documentation.

Javadoc Commands

The Javadoc tool parses special tags when they are embedded within a Javadoc comment. These doc tags enable a
programmer to autogenerate a complete, well-formatted API from the source code. The tags start with an ampersand (@)
and are case-sensitive; an "a" is different from an "A."

A tag must start at the beginning of a line, after any leading spaces and an optional asterisk, or it will be treated as normal
text. By convention, group tags with the same name together. For example, put all @ ee tags together.

Guidance

* (G1027: Internally document all source code developed with Department of Defense (DoD) funding.

Page 11

Part 5: Developer Guidance

Part 5: Developer Guidance > Automate the Software Build Process

P1007: Automate the Software Build Process

A software build process interfaces with source control, compiles code, creates executables, runs unit tests, packages
and deploys, and generates documentation. Automating a software build process provided for the following advantages:

provides for improved quality, consistency, and repeatability as the software is built in the same manner each time
reduces the time required to compile, link, and package software components allowing for more often build cycles
helps to reduce dependencies on key personnel for building software

supports faster integration cycles as the time required to build, link, and package software is reduced

In addition, using an automated build process that is executed outside of the Integrated Development Environments
(IDEs) reduces problems when sharing code between groups using different IDEs.

Common Build Tools

There are many products available that support automating the software build process. The guidance provided
below aids in selecting tools which provide the most interoperability of build processes and prevents dependencies
on any given IDE. The following are examples of software build tools in use with the software development
industry:

Make is a commonly used name (for which there are various implementations such as GNU Make) for a build tool
that compiles and links source code. Make conducts build operations according to a build instruction contained in a
file called the makefile. Make is commonly used for building software based on C and C++, although it is applicable
to most programming languages and development environments. Tools such as Automake (for which there are
various implementations such as GNU Automake) provide support for building makefiles.

Like Automake, the Makefile, Project, and Workspace Creator (MPC) supports the creation of makefiles for the
Make tool as well as supports creating build files for several other commercial IDEs as well.

Apache Ant and Apache Maven are common multi-platform build tools used to automate the build process for Java
software development. Both are based on the use of XML for describing the build process. Build processes are
generally described procedurally in Apache Ant and are described more declaratively in Apache Maven.

Guidance

G1190: Use a build tool.

G1218: Use a build tool that supports operation in an automated mode.

G1219: Use a build tool that checks out files from configuration control.

G1220: Use a build tool that compiles source code and dependencies that have been modified.
G1221: Use a build tool that creates libraries or archives after all required compilations are complete.
G1222: Use a build tool that creates executables.

G1223: Use a build tool that is capable of running unit tests.

G1224: Use a build tool that cleans out intermediate files that can be regenerated.

G1225: Use a build tool that is independent of the Integrated Development Environment.

Page 12

http://www.gnu.org/software/make/
http://sources.redhat.com/automake/
http://www.ociweb.com/products/mpc
http://ant.apache.org/
http://maven.apache.org/

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages

P1113: Programming Languages

This Complex Perspective contains a collection of Detailed Perspectives which provide programming language guidance.
The purpose of the following Perspectives is to provide language-specific guidance with the purpose of improving
interoperability and net-centricity.

Detailed Perspectives

« C++[P1090]
 VHDL [P1088]

Page 13

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > C++

P1090: C++

The development of software is a complex and difficult process that covers a wide range of activities starting at the
earliest phases of requirements analysis all the way through the release of the software. In the DoD, many formal
processes, documents and reviews need to occur before software is ready for release as a product. This complexity has
increased as the accepted software development processes has evolved to embrace Object-Oriented techniques and
incremental development.

A number of individuals, institutions, companies and products have attempted to solve software development issues
and have produced a number of very useful papers, dissertations and books. It is not the intent of this NESI perspective
to re-state written material or to endorse any particular institution, corporation or product. This perspective highlights
those practices relating to the use of the C++ language which have demonstrated an ability to increase interoperability
and enable net-centricity. In particular, one goal of this perspective is to identify guidance and best practices which
facilitate interoperability of C++ code in order to promote reuse. Interoperability and code reuse depends on security and
trustability; the Carnegie Mellon University Computer Emergency Response Team (CERT) [R1301] provides additional
detail regarding secure programming practices for C++.

This perspective includes three sub-perspectives; much of the content is modeled after coding standards Herb Sutter and
Andrei Alexandrescu put forth in the referenced text.[R1150]

Detailed Perspectives

e C++ Namespaces and Modules [P1115]
e C++ Operator Overloading [P1114]
e C++ Header Files [P1089]

Page 14

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > C++ > C++ Namespaces and Modules

P1115: C++ Namespaces and Modules

Namespaces and modules are abstract containers for related items. Often, software developers use both to isolate
related items in order to promote reuse. Namespaces provide a context within which to define identifiers (i.e., classes,
constants, variables, and functions). One advantage of namespaces is that they allow multiple identifiers with the same
name to be used in the same code without name collisions.

Guidance
» G1778: Place all #i ncl ude statements before all namespace usi ng statements.
» G1779: Explicitly namespace-qualify all names in header files.

Best Practices

e BP1781: Allocate and de-allocate all module objects within the module that contains the objects.
« BP1782: Do not propagate exceptions across module boundaries.
» BP1783: Use portable types in a module's interface.

Page 15

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > C++ > C++ Operator Overloading

P1114: C++ Operator Overloading

C++ allows for overloading of operators in order to change their implementation depending on the type of arguments
provided. This can improve code clarity and serve as a short hand for developers. However, developers must be careful to
not change the expected behavior or semantics of an operator in a way that provides unexpected behavior to developers
using the code. Code which has clearly understood behavior has a better chance of being reusable.

Guidance

» G1775: Do not overload the logical AND operator.
» G1776: Do not overload the logical OR operator.
* G1777: Do not overload the coma operator.

Best Practices

« BP1780: Only overload arithmetic operators for objects that are arithmetic in nature.

Page 16

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > C++ > C++ Header Files

P1089: C++ Header Files

A header file in C++ describes the interface of the related implementation file. Header files serve as a communication
mechanism to describe interfaces including data-types, namespaces, required resources, as well as serving as a source
of reference documentation. The compiler uses header files during compilation, and humans use header files during
software development. To promote reuse, header files need to be self-describing and developed such that compilation is
straight forward and consistent from one compile to another.

Guidance
* G1773: Use #i ncl ude guards for all headers.
* G1774: Make header files self-sufficient.
» G1779: Explicitly namespace-qualify all names in header files.

Page 17

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > VHDL

P1088: VHDL

The development of hardware described by software is a complex and difficult process that covers a wide range of
activities: starting at the earliest phases of requirements analysis all the way through the fabrication of a functioning digital
circuit. One language developed for describing digital circuits is Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL).

In the DoD, there are many formal processes, documents and reviews which need to be done in order for the software
code to be approved to be developed into a physical circuit. This complexity has been made more complicated in nature
as modern chip designs have become increasingly large and intricate. There have been many articles and books written
on these issues. It is not the intent of this perspective to re-state written material. It is the intent of this perspective to
highlight those practices which have been demonstrated to increase interoperability and reuse of VHDL code.

Detailed Perspectives

¢ VHDL Coding and Design [P1091]

e VHDL Testbench [P1094]

e VHDL Synthesizable Design [P1093]
* VHDL Synchronous Design [P1092]

Page 18

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > VHDL > VHDL Coding and Design

P1091: VHDL Coding and Design

There are coding and design decisions that are made during the lifecycle of a program or project which can have
significant impact on interoperability and net-centricity. Many of these decisions directly relate to cohesion and coupling.
Modifications to a project's code often create additional obstacles and decreases efficiency. The purpose of this
perspective is to provide guidance and best practices to minimize these problems.

Guidance
» (G1717: Use constants instead of hard-coded numbers for characteristics that may change throughout the lifetime of
the model.

Best Practices

e BP1720: Do not use commonly predefined VHDL identifier names for other identifiers.
» BP1721: Define a VHDL package for closely related VHDL items that support an application function.
* BP1722: Employ VHDL components for commonly used VHDL described circuits.

Page 19

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > VHDL > VHDL Testbench

P1094: VHDL Testbench

A VHDL testbench is a VHDL component used to verify that a developing circuit design is functioning as planned. The
testbench generates the stimulus to drive the unit under test under a variety of test conditions, verifies that it meets
specifications, and reports all errors and warnings in a concise human readable format. The testbench is used during the
simulation phase of digital electronic design automation.

Guidance
* (G1719: Automate testbench error checking in VHDL development.

Page 20

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > VHDL > VHDL Synthesizable Design

P1093: VHDL Synthesizable Design

To be able physically to implement hardware described by software, the design must be synthesizable. Synthesis is a
process where an abstract form of described circuit behavior (e.g., VHDL code) is mapped to an implementation in terms
of logic gates (AND, OR, NOT, etc.). Logic synthesis is an essential part of digital electronic design automation and is often
the step following code compilation and simulation.

Best Practices

» BP1723: Do not use guarded signals.

Page 21

Part 5: Developer Guidance
Part 5: Developer Guidance > Programming Languages > VHDL > VHDL Synchronous Design

P1092: VHDL Synchronous Design

The engineers of digital integrated circuits (ICs) are very careful to make sure their designs are correct, for it is imperative
that hardware designs are correct before being fabricated into physical circuits. However, digital circuits are not easily
testable and real tests cannot be done on them until the circuit design has been finalized and physically produced. This
is one of the reasons why the majority of today's digital designs are based on a synchronous design to improve the
probability that the final produced chip will work by simplifying the process and using reliable techniques.

Guidance

» (1718: Design circuits to be synchronous.

Page 22

Part 5: Developer Guidance
Part 5: Developer Guidance > Software Security

P1065: Software Security

Security is a top priority in the nation's agenda. It is more critical than ever to establish security guidelines for new and
evolving military systems, especially for information technology based systems. Software vulnerabilities, malicious
code, and software that does not perform as intended pose an increased risk to the loss of operational capability and
information superiority.

Software, in order to be useful, must be dependable (executes predictably and correctly under all conditions, including
hostile conditions), trustworthy (contains few vulnerabilites or weaknesses that allow intentional loss of dependability or
malicious behaviour of the software), and survivable (resilient to attack and able to recover quickly with minimal damages
or loss of data from attacks it cannot resist). At a minimum, good secure software provides the following:

« Identification, Authentication, and Authorization to ensure proper control of access to the software and the data
it handles

» Confidentiality to prevent unintended disclosure of information

* Integrity to ensure correctness and reliability of the software along with information assurance to provide assertions
that the software, and the data handled by it, are used correctly

* Availabiliy to ensure the software is able to be used when required
* Management capabilities to manage and audit the use of the software

Software security requires active consideration throught the lifecycle to include the requirements, development,
deployment, operation, and substainment phases.

The detailed perspectives listed below provide guidance for the development of secure software organized around two
security aspects that apply to the development of any software system. The first aspect is the technologies and standards
used to enable security, and the second is the policies and processes which promote security.

The following resources provide additional information to supplement the more specific content of the items linked in the
Detailed Perspectives subsection.

» The Information Assurance Technology Analysis Center (IATIC) State-of-the-Art Report Software Security
Assurance [R1338] provides techniques (to include process models, life cycle models, and best practices) useful for
producing secure software.

» The Software Assurance Acquisition Working Group report Software Assurance in Acquisition: Mitigating Risks to the
Enterprise [R1340] provides processes and guidance useful for both software practitioners and acquisition personel to
ensure the development of software that is secure.

» The National Institute of Standards and Technology (NIST) Special Publication (SP) 800-117, Guide to Adopting and
Using the Security Content Automation Protocol (SCAP), and SP 800-126, The Technical Specification for the Security
Content Automation Protocol (SCAP), provide information on a suite of specifications that standardize the format and
nomenclature by which security software products communicate software flaw and security configuration information.
Both of these Special Publications are available via the NIST Special Publications (800 Series) index.[R1355] Software
developers can use SCAP to make security settings available through automation.

Detailed Perspectives

« Technologies and Standards for Implementing Software Security [P1391]
¢ Policies and Processes for Implementing Software Security [P1392]

Page 23

Part 5: Developer Guidance
Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security

P1391: Technologies and Standards for Implementing Software
Security

The following perspectives provide guidance and best practices regarding the role of technologies and standards for
implementing software security in the following areas:

» Using Public Key Infrastructure (PKI) related technologies to enable identification, authentication, and
authorization

» Using XML Digital Signatures to provide non-repudiation

» Using encryption technologies and guidance to provide confidentiality

» Providing secure services

» Protecting data storage

» Using programming languages securely

Detailed Perspectives

e Public Key Infrastructure (PKI) and PK Enable Applications [P1061]
« Key Management [P1041]

« Certificate Processing [P1009]

e Smart Card Logon [P1315]

« XML Digital Signatures [P1387]

« Encryption Services [P1020]

e SOAP Security [P1085]

e Security Assertion Markup Language (SAML) [P1189]
* RDBMS Security [P1064]

e LDAP Security [P1042]

* JNDI Security [P1039]

* Application Resource Security [P1005]

e Java Security [P1038]

Page 24

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
Public Key Infrastructure (PKI) and PK Enable Applications

P1061: Public Key Infrastructure (PKI) and PK Enable Applications

More and more secure client/server applications are appearing on the market. Applications today are relying heavily on
Digital Signature technology to certify messages received were indeed sent by the sender. Both of these technologies
use Public Key encryption, which is currently the only feasible way of implementing security over an insecure network
such as the NIPRNet. Public Key encryption ensures that any form of communication that many contain sensitive
information (i.e., passwords, credit card numbers) is protected while in transit and provides assurance to the receiver that
the message was really sent by the sender. In the case of Web-based technologies, this is accomplished with a server
that implements encryption at the communications level. The de facto standards for communication based encryption
are the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. The infrastructure used to support
communication-based encryption is PKI which is composed of a number of cryptographic technologies but provides for
two key services, data integrity and confidentiality. Public Key systems involve a Certificate Authority (CA) responsible
for issuing a pair of digital certificates: one public and one private. The public key, as its name suggests, may be freely
disseminated. This key does not need to be kept confidential. The Private Key, on the other hand, must be kept secret.
The owner of the key pair must guard the private key closely, as sender authenticity and non-repudiation are based on the
signer having sole access to the private key. There are several important characteristics of these key pairs. First, while
they are mathematically related to each other, it is impossible to calculate one key from the other. Therefore, the private
key cannot be compromised through knowledge of the associated public key. Second, each key in the key pair performs
the inverse function of the other. What one key does, only the other can undo.

The CA is a trusted third party that issues digital certificates to its subscribers, binding their identities to the key pairs they
use to sign electronic communications digitally. Digital certificates contain the name of the subscriber, the subscriber's
public key, the digital signature of the issuing CA, the issuing CA's public key, and other pertinent information about the
subscriber and the subscriber's organization. The CA can revoke certificates upon private key compromise, separation
from an organization, etc. These certificates are stored in an on-line, publicly accessible repository. The repository,
referred to as Certificate Revocation List (CRL), also maintains an up-to-date listing of all revoked but not yet expired
certificates.

For the DoD PKI, users interface with the Real Time Automated Personnel Identification System (RAPIDS)
workstation via the Issuance Portal for digital certificates residing on the Common Access Card (CAC).

To guarantee that data stays confidential and secure from attackers listening on the network in promiscuous mode (i.e.,
network sniffers) and to provide better performance, Symmetric Encryption (secret key) is used to encrypt and decrypt
the data. Asymmetric Encryption (public key-private key) is not used for all encryption because it is too expensive for
high volume data. For SSL and TLS, Asymmetric Encryption is used initially to pass the secret key (often called the
session key). Once the secret key has been established on both sides, all subsequent data communications can be
performed using Symmetric Encryption.

There are at least two options when an application needs to support PKI/SSL: use a DoD-approved module or develop
the application abiding by the DoD Class 3 Public Key Infrastructure Interface Specification. The guidance linked to
this perspective applies to Public Key Enabled applications wanting to operate within the DoD PKI.

Guidance

e (G1308: Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS)
140-2 certified cryptographic module.

» (G1309: Make applications handling high value unclassified information in Minimally Protected environments Public
Key Enabled to interoperate with DoD High Assurance.

» (G1310: Protect application cryptographic objects and functions from tampering.

» (G1311: Use Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS) when applications communicate
with DoD Public Key Infrastructure (PKI) components.

* (G1312: Make applications capable of being configured for use with DoD PKI.
e (G1313: Provide documentation for application configuration for use with DoD PKI.

Page 25

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security > Key
Management

P1041: Key Management

The key enabler in the PKE applications is Asymmetric Encryption, the use of public and private keys. Itis used in
exchanging session keys, and it is used to verify Certificates; therefore, it is critical for applications to manage and
protect the keys used in PKI. This includes the associated technologies used to store the keys and Certificates. The
following list of guidance addresses key management issues.

Guidance
» (G1314: Provide applications the ability to import Public Key Infrastructure (PKI) software certificates.
e (G1316: Ensure that applications protect private keys.

e G1317: Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the
Certificate) when used in the context of signed and/or encrypted email.

» (G1318: Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

* (G1319: Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery
Manager (KRM).

» (1942: Provide applications the ability to export Public Key Infrastructure (PKI) software certificates.

Page 26

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
Certificate Processing

P1009: Certificate Processing

The DoD implementation of the Public Key Infrastructure (PKI) is the framework and services that provide for the
generation, distribution, control, tracking and destruction of Public Key Certificates. The purpose of a PKI is to manage
keys and Certificates in a way whereby the DoD can maintain a trustworthy networking environment. Digital Certificates
are issued by a DoD Certificate Authority. It is an electronic document that contains a user's identity, a pubic key, a
validity period, and the issuing authority. It is digitally signed and the Certificate is chained hierarchically in a path that can
be traced to the Root Certificate.

s =
Root

Certification

Intermediate
Certification

End Entity
(Usex)

1oel

Certificates can be sent via email or more commonly retrieved from repositories (Directory Server). Applications

must validate the Certificate by checking status of the Certificate. There are two forms of status checking, the legacy
Certificate Revocation List (CRL) or Online Certificate Status Protocol (OCSP). The status check determines whether
a Certificate is revoked. A Certificate can be revoked if the information in the Certificate may have changed (relocation,
new email) or the Certificate has been compromised. The Certificate validation is a critical part of the PKI process; it is

the application's responsibility to perform the status checks. The following guidance sets the guidelines for the Certificate
processing.

- Restid .
DENYVER E Mburliy H CHAMBERSBURG
CA Sagrang Cerldicae Server A Sigung Certdicab
g E-
h‘?;h Certificaie Doy
Avathe ity Serer

11093

Guidance
e (G1327: Enable an application to obtain new Certificates for subscribers.

» (G1328: Enable an application to retrieve Certificates for use, including relying party operations.

Page 27

Part 5: Developer Guidance

G1330: Ensure applications are capable of checking the status of Certificates using a Certificate Revocation List
(CRL) if not able to use the Online Certificate Status Protocol (OCSP).

G1331: Ensure applications are able to check the status of a Certificate using the Online Certificate Status
Protocol (OCSP).

G1333: Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not
Before" and "Validity - Not After" date fields.

G1335: Make applications capable of being configured to operate only with PKI Certificate Authorities specifically
approved by the application's owner/managing entity.

G1338: Ensure that Public Key Enabled applications support multiple organizational units.

Page 28

Part 5: Developer Guidance

Part 5. Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
Smart Card Logon

P1315: Smart Card Logon

Smart Card Logon (SCL), also called Cryptographic Logon (CLO), capability enables users to log onto their unclassified
network using their Common Access Card (CAC) and associated Personal Identification Number (PIN) instead of a
username and password.

This capability addresses the Department of Defense (DoD) mandate in DoD Instruction 8520.2 [R1206] to Public Key
(PK) enable all unclassified networks for certificate-based authentication to DoD information systems. SCL provides the
increased security of two-factor authentication by allowing users to access their network with something they have (their
CAC with DoD issued certificates) and something they know (their PIN).

Note: Joint Task Force-Global Network Operations (JTF-GNO) Communications Tasking Orders (CTOs; for
example, CTO 06-02 and CTO 07-015) provide specific implementation directions for DoD, to include non-
Windows-based operating systems (see https://www.cybercom.mil/default.aspx; DoD PKI required). Additional
Mobile Code policy information is available from the Information Assurance Support Environment Web
site, http://iase.disa.mil/mcp/index.html; DoD PKI required.

Before enabling SCL, each unclassified network must also meet the following requirements:

* Implement Active Directory in the root domain

» Equip user workstations with a DoD-approved Windows operating systems, smart card readers, drivers, and the
appropriate version of middleware

« Populate Active Directory accounts with each user's Electronic Data Interchange Personal Identifier (EDI-PI)
numbers associated with the CAC certificates

Once users start using SCL to access their unclassified networks, they no longer need to remember their ever-changing
and complex network passwords. SCL is a more secure method of network logon because the PIN is not stored on or
transmitted over the network.

The following process illustrates how to use the PKI certificate for network logon:

» The user inserts the user's CAC into the smart card reader attached to the workstation, and, when prompted, enters
the user's CAC PIN instead of a username and password

e A secure process retrieves the PKI certificate from the CAC and verifies it is valid and from a trusted issuer

» The user's workstation verifies the network domain controller's certificate is valid and from a trusted issuer

» If the user's PKI certificate and the domain controller certificate are valid, the user is automatically logged onto the
network

Note: There are certain user groups (e.g., system administrators) that are unable to use PKI Certificates on a

CAC as the primary token for smart card logon. A DoD CIO memo of 14 August 2006, Approval of the Alternate
Logon Token (available via Defense Knowledge Online, https://www.us.army.mil/ [user account and DoD PKI
Certificate required] DoD PKE Knowledge Base Library Smart Card and Alternate Token folders) permits the use of
an Alternate Logon process.

The Defense Manpower Data Center (DMDC) Common Access Card site (http://www.dmdc.osd.mil/smartcard) contains
additional information, reports and developer support concerning the DoD CAC implementation.

Guidance
» (G1862: Configure Active Directory for Smart Card Logon.
* (G1869: Configure Domain Controllers for Smart Card Logon.

Page 29

https://www.cybercom.mil/default.aspx
http://iase.disa.mil/mcp/index.html
https://www.us.army.mil/suite/collaboration/folder_V.do?foid=8989116&load=true
http://www.dmdc.osd.mil/smartcard

Part 5: Developer Guidance

Part 5. Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
XML Digital Signatures

P1387: XML Digital Signatures

XML signatures are a form of digital signatures applied to digital content including XML; XML signatures are represented
as XML, but the signed data may be any collection of digital content. XML signatures are usually used to sign XML
documents or portions thereof. XML signatures as defined in NESI, particularly in this perspective, are specified by the
W3C recommendation XML Signature Syntax and Processing.

XML signatures often serve as electronic versions of signatures. XML signatures provide a means to implement non-
repudiation and detect changes to signed content.

Signing XML content is more complicated than signing other digital content, since XML has more than one syntactically
correct way to express data. Because digital signatures are based on a hash of the signed content, a singe byte
difference in the signed content can cause a verification of the digital signature to fail. The following examples show ways
to represent different syntactically correct XML documents that may be semantically equivalent in a given context.

» White space is often insignificant within XML documents (<Node > is syntactically identical to <Node>).
* Order of XML attributes may vary.

* Nodes within an XML document may have different XPath representations (for example using a relative path versus an
absolute path).

» Namespace prefixes may have different name but represent to same namespace.
« Namespaces declarations may occur in any order.
» XML Element attributes may vary in order.

» Child elements may inherent namespaces from parent elements which creates portability issues for signed nodes that
are moved from one XML document to another.

» Line break characters may vary between operating systems.
» Order of XML nodes can vary or be unspecified.
* XML comments may vary between XML documents.

Because XML allows these different representations within XML documents, it is necessary to conduct a
canonicalization of the XML document before signing a XML document and before verifying a signature of an

XML document. Unfortunately existing canonicalization specifications are insufficient in some case and impact the
interoperability and use of XML digital signatures. In some cases, it is necessary for developers to conduct their own
canonicalization of XML as a precondition before signing the XML and again before verifying the signature of the signed
XML to ensure consistency between the signed and verified documents and to account for inconsistencies for which the
current canonicalization specification do not account.

In addition to issues relating to canonicalization and signature creation and verification, there is a potential to abuse digital
signatures to conduct denial of service, cross-site scripting, or replay attacks through the use of carefully crafted XSLT
and XPath expressions. To work around these issues, developers often employ a number of best practices to limit or
reduce the impacts of such attacks. The W3C is drafting a collection of such best practices for the practical and secure
use of XML digital signatures: http://www.w3.0rg/TR/xmldsig-bestpractices/. In addition to these best practices, NESI
provides a number of guidance and best practice statements for the use of XML digital signatures.

The following links provide additional information for XML Digital Signatures and Canonicalization specifications.
 W3C Recommendation, XML Signature Syntax and Processing (Second Edition), 10 June 2008, http://www.w3.org/
TR/xmldsig-core/

» W3C Recommendation, Canonical XML Version 1.1, 2 May 2008, http://www.w3.0rg/TR/2008/REC-xml-
c14n11-20080502/

* W3C Recommendation, Exclusive XML Canonicalization Version 1.0, 18 July 2002, http://www.w3.0rg/TR/2002/REC-
xml-exc-c14n-20020718/

Guidance

» (1366: Digitally sign all messages where non-repudiation is required.

Page 30

http://www.w3.org/TR/xmldsig-bestpractices/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Part 5: Developer Guidance
e (G1367: Digitally sign message fragments that are required not to change during transport.

e (G1371: Use the National Institure of Standards and Technology (NIST) Digital Signature Standard
promulgated in the Federal Information Processing Standards Publication 186 (FIPS Pub 186-3 as of June 2009)
for creating Digital Signatures.

* (G1902: Use the Exclusive Canonicalization algorithm when digitally signing XML content that may be embedded in
another XML document.

Best Practices
» BP1903: Include an xsd:dateTime field within long-lived XML digital signatures.

Page 31

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
Encryption Services

P1020: Encryption Services

Successful implementation of Public Key enabled applications is predicated on the correct selection and use of security
algorithms. This section provides guidance on the use of encryption, digital signature, and authentication services in a
consistent manner to interoperate with DoD PKI.

Guidance

G1320: Use a minimum of 128 bits for symmetric keys.

G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of performing
cryptologic operations using the Triple Data Encryption Algorithm (TDEA).

G1323: Generate random symmetric encryption keys when using symmetric encryption.
G1324: Protect symmetric keys for the life of their use.
G1325: Encrypt symmetric keys when not in use.

G1326: Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to
support verification of DoD PKI signed objects.

G1797: Use a minimum of 1024 bits for asymmetric keys.

Page 32

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
SOAP Security

P1085: SOAP Security

Several security challenges arise from implementing a typical service-oriented architecture using SOAP including the
following:

Authentication (ensure that the sender of the message is genuine)

« Preventing identity spoofing when accessing to a Web service.
< Preventing tampering with the WSDL file of a Web service provider in order to spoof an endpoint.

Integrity (ensure that an unauthorized third party cannot change a message during transmission without detection)

« Preventing the interception of a message to or from a Web service provider to change its contents.

Confidentiality (ensure that a message cannot be read by an unauthorized third party during transmission)

e Preventing the interception of a message to or from a Web service provider and to obtain privileged information.

These security challenges are commonly addressed at the communication layer, the message layer, or both. The Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) protocols are commonly applied to the communication

layer to provide confidentiality and authentication (both one-way and two-way authentication of service producers and
consumers); see the Authorization and Access Control [P1339] perspective for further information.

Industry standards organizations such as the World Wide Web Consortium (W3C) and Organization for the
Advancement of Structured Information Standards (OASIS) address these threats at the message level by specifying
standards for providing authentication, protecting integrity and ensuring confidentiality. A common set of message layer
specifications in the SOAP security space includes the following:

Web Services Security (WS-Security) provides message layer mechanisms for implementing SOAP security. WS-
Security supports message integrity through the use of XML Digital Signatures, support message confidentiality
through the use of XML Encryption, and support authentication through the use of credentials such as X.509
certificates, Security Assertion Markup Language (SAML) tokens, and username/passwords.

XML Digital Signatures provide a means to implement non-repudiation and detect changes to signed content. See the
XML Digital Signatures [P1387] perspective for additional information.

XML Encryption provides confidentiality by specifying a process for encrypting data (arbitrary data to include XML
content). The result of the encryption processes is an XML element containing or referencing the encrypted data. XML
Encryption can be selectively applied to data (for example to only parts of a XML document).

SAML specifies ways to exchange security information (such as authentication, authorization, and attribute information
related to assertions) across security domains. See the Security Assertion Markup Language [P1189] perspective for
more information.

eXtensible Access Control Markup Language (XACML) is a specification used in conjunction with SAML to
represent and exchange access control policies across an enterprise.

Web Services Policy (WS-Policy) describes a model and syntax for Web services to describe its requirements
(required security policies, supported encryption algorithms, message delivery reliability requirements, etc.).

WS-Trust specifies ways to issue, renew, obtain, and validate security tokens used to create trust relationships
between participants in a secure message exchange.

Guidance

» G1357: Do not rely solely on transport level security like SSL or TLS.

* (G1359: Bind SOAP Web service security policy assertions to the service by expressing them in the
associated WSDL file.

* (1362: Validate XML messages against a schema.
* (G1363: Do not use clear text passwords.

e (G1364: Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

Page 33

https://nesi.spawar.navy.mil/nesix//View/P1339

Part 5: Developer Guidance
G1365: Specify an expiration value for all security tokens.
G1366: Digitally sign all messages where non-repudiation is required.
G1367: Digitally sign message fragments that are required not to change during transport.
G1369: Digitally sign all requests made to a security token service.

G1371: Use the National Institure of Standards and Technology (NIST) Digital Signature Standard
promulgated in the Federal Information Processing Standards Publication 186 (FIPS Pub 186-3 as of June 2009)
for creating Digital Signatures.

G1372: Use an X.509 Certificate to pass a Public Key.

G1373: Encrypt messages that cross an IA boundary.

G1374: Individually encrypt sensitive message fragments intended for different intermediaries.
G1376: Do not encrypt message fragments that are required for correct SOAP processing.

Best Practices

BP1360: Use the XML Infoset standard to serialize messages.

BP1375: Use asymmetric encryption for sensitive SOAP-based Web services.

Page 34

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
Security Assertion Markup Language (SAML)

P1189: Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) is a vendor-neutral protocol specification for software applications
and services to exchange security information in a distributed network environment. The SAML specification, maintained
by the OASIS Security Services Technical Committee, defines schemas for how security assertions are structured and
embedded within transport protocols.

SAML defines three types of assertions for an individual or machine:

Authentication used for proving identity
Authorization used for controlling access
Attributes used to provide additional details to constrain the request

Email address, employee number, and rank are examples of attribute assertions.

SAML does not define any implementation of the services that authenticate or authorize users. Commercial vendors
provide implementations in the form of authentication servers to authenticate and authorize users. Authentication servers
respond to SAML requests and return SAML assertions that ensure the subject is logged in and authorized to access the
resource.

Guidance

e G1379: Use SAML version 2.0 for representing security assertions.
» (G1380: Use the XACML 2.0 standard for SAML-based rule engines.

Page 35

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
RDBMS Security

P1064: RDBMS Security

Relational Database Management Systems remain on top amidst emerging technologies such as XML and Object-
Oriented Database Management Systems. The continued dominance of relational databases is unlikely to change in
the near future. First, there is still a large amount of legacy data and legacy applications that rely on RDBMS. Second,
RDBMS are continuing to evolve to integrate XML as a function of the database. RDBMS is a reliable and proven
technology that will be here for the long run. This perspective provides guidance on how best to secure the database.

Guidance
* (1346: Audit database access.
e G1347: Secure remote connections to a database.
e (G1348: Log database transactions.
» (G1349: Validate all input that will be part of any dynamically generated SQL.
* (G1350: Implement a strong password policy for RDBMS.
» (G1351: Enhance database security by using multiple user accounts with constraints.

* (G1352: Use database clustering and redundant array of independent disks (RAID) for high availability of data.
Best Practices

» BP1353: Use a data abstraction layer between the RDBMS and application for externally-visible applications to
prevent the disclosure of sensitive data.

» BP1355: Do not design the database around the requirements of an application.

Page 36

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
LDAP Security

P1042: LDAP Security

The Lightweight Directory Access Protocol (LDAP) can be thought of as a datastore. It is an open Internet standard
produced by the Internet Engineering Task Force (IETF). LDAP is, like X.500, both an information model and a protocol
for querying and manipulating it. The LDAP overall data and namespace model is essentially that of X.500. The major
difference is that the LDAP protocol itself is designed to run directly over the TCP/IP stack, and it lacks some of the more
esoteric DAP protocol functions. LDAP can store text, photos, URLSs, pointers to whatever, binary data, and Public Key
Certificates.

Guidance
* (G1377: Use LDAP 3.0 or later to perform all connections to LDAP repositories.

e (G1378: Encrypt communication with LDAP repositories.

Page 37

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
JNDI Security

P1039: JNDI Security

The Java Naming and Directory Interface (JNDI) is an API for directory services in a Java EE environment. It

allows clients to discover and look up data and objects using a name. JNDI is portable and independent of the actual
implementation. Additionally, it specifies a service provider interface (SPI) that allows plugging directory service
implementations into the framework. The JNDI service implementations are hidden from the user and may make use of a
server, a flat file, or a database. The choice is up to the JNDI provider.

Guidance
» (G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

e (G1079: Use deployment descriptors to isolate configuration data for Java EE applications.

e (G1239: Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

Best Practices

* BP1116: If using Java-based messaging (e.g., JMS), register destinations in Java Naming and Directory
Interface (JNDI) so message clients can use JNDI to look up these destinations.

Examples

/] Step 1

/] Create a hashtable that contains the paraneters

/] used to initialize JNDI .

Hasht abl e cont ext Parans = new Hasht abl e() ;

/] Step 2

/'l Specify the context factory to use. The context

/] factory is provided by the

/1 inplenentation.

cont ext Par anms. put (Cont ext. | Nl TI AL_CONTEXT_FACTORY, "com j ni dprovi der. Cont ext Factory");
/] Step 3

/'l The next paraneter is the URL specifying the |ocation

/1 of the JNDI provider's data store

cont ext Par anms. put (Cont ext. PROVI DER_URL, "http://]jndi provi der-dat abase");
/Il Step 4

/] Create the JNDI provider's context.

Cont ext navyCurrent Context= new I nitial Context (contextParans);

/] Step 5

/] Look up the desired bean using its full nane.

oj ect reference= navyCurrent Context.|lookup ("ml.us.navy. NavyBean");
/] Step 6

/] Cast the l|ocated bean to the desired type.

M/Bean navyBean= (NavyBean) Port abl eRenot eCbj ect.narrow (reference);

Page 38

Part 5: Developer Guidance

Part 5. Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
Application Resource Security

P1005: Application Resource Security

Applications use and store a large amount of data that often do not go into databases. For instance, an application

often uses configuration files for application configuration, preferences files for personalization information (custom user
experience) and resource files for internationalization support. Apply appropriate protection to sensitive resources to
prevent attackers from tampering. Application bundles, properties files, configuration files when tampered could cause the
user to execute inappropriate commands, expose sensitive data due to invalid configuration or cause the application to be
inoperable. Therefore, it is of utmost importance to take appropriate measures to protect these resources.

Guidance

» (G1344: Encrypt sensitive data stored in configuration or resource files.

Page 39

Part 5: Developer Guidance

Part 5. Developer Guidance > Software Security > Technologies and Standards for Implementing Software Security >
Java Security

P1038: Java Security

Java is an Object Oriented Language; applications benefit from the encapsulation features which offers protection for
application data. Java was also designed and built with security in mind. Some of the security features include restricting
direct access to memory (protecting data access privileges), array bounds checking (buffer overflow), and ability to install
a security manager to protect resources. Despite all the security features built into the Java language, it does not mean
that Java APIs are immune to security problems. Take care in the design and implementation of APIs to prevent attacks.
The following security guidance are targeted to Java-specific APIs.

Guidance
» (1341: Use a security manager support to restrict application access to privileged resources.
» (G1342: Restrict direct access to class internal variables to functions or methods of the class itself.
e (G1343: Declare classes final to stop inheritance and prevent methods from being overridden.

Page 40

Part 5: Developer Guidance
Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security

P1392: Policies and Processes for Implementing Software Security

Many software errors and exploits share similar root causes resulting from the failure to follow common high level best
practices. The detailed perspectives listed below provide best practices to enable compliance with policies and processes
for implementing software security.

The Secure Coding and Implementation Practices [P1316] perspective provides a high level overview of important
areas for consideration during software development from a programming language independent viewpoint. It discusses
software security activities and best practices for use throughout the development lifecycle.

Protecting Data at Rest has become increasingly critical given Information Technology trends toward utilizing highly
mobile computing devices and removable storage media. The Data at Rest [P1360] perspective provides guidance for
complying with the DoD memorandum Encryption of Sensitive Unclassified Data at Rest on Mobile Computing Devices
and Removable Storage Media [R1330] which mandates encryption not only for Personally Identifiable Information
(P11 information but for all non-publicly released unclassified information contained on mobile computing devices and
removable storage media.

The Mobile Code [P1314] perspective provides guidance to comply with DoD Instruction 8552.01, Use of Mobile Code
Technologies in DoD Information Systems [R1292]. This Instruction identifies DoD-defined mobile code risk categories,
describes their characteristics, and establishes restrictions for the acquisition (to include development) and use of mobile
code technologies assigned to each risk category. This instruction applies to all DoD-owned or DoD-controlled information
systems used to process, transmit, store, or display DoD information including mobile devices.

Detailed Perspectives

¢ Secure Coding and Implementation Practices [P1316]
e Data at Rest [P1360]
« Mobile Code [P1314]

Best Practices

» BP1868: Incorporate mechanisms to enhance Computing Infrastructure (Cl) availability.

Page 41

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices

P1316: Secure Coding and Implementation Practices

Many software errors and exploits share similar root causes resulting from the failure to follow common high level best
practices. This perspective provides insight into a few of the major secure coding and implementation best practices from
a programming language independent viewpoint.

This perspective does not provide all required guidance and best practices for secure software development. However, it
does strive to provide a high level overview of important areas for consideration during software development. Finally, this
perspective serves as a resource for additional information and tools for building secure software.

For best effectiveness, software security activities should occur throughout the development lifecycle. For example,
security requirements (such as required roles, privacy requirements, accreditation requirements, etc.) are captured
during the requirement phase of software system development. During the design phase, high level concepts such as
defense in depth and principal of least privilege are applied. During actual development, programmers follow predefined
development practices to include applying a coding standard. Finally, unit testing, regression testing, and peer reviews
test the developed software for security vulnerabilities and policies.

Detailed Perspectives

* Apply Principle of Least Privilege [P1317]

* Practice Defense in Depth [P1318]

« Apply Secure Coding Standards [P1319]

e Apply Quality Assurance to Software Development [P1320]
* Validate Input [P1321]

* Heed Compiler Warnings [P1322]

« Handle Exceptions [P1323]

Page 42

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices > Apply Principle of Least Privilege

P1317: Apply Principle of Least Privilege

To minimize risk and side effects due to possible security vulnerabilities, each process, function, or method within a
software system should execute with the minimal set of privileges necessary to complete the action. To enable execution
of code with the minimal set of privileges required, separate code requiring access to different resources or higher
privileges. Whenever it is necessary to have an elevated permission level to complete an action, the elevated permission
should be held for a minimum time. This approach reduces the chance that a security exploit can execute arbitrary code
and minimizes the impact when an exploit occurs.

Best Practices

» BP1881: Separate code based on required privilege.

» BP1889: Minimize execution at elevated privilege levels to the shortest time required.

Page 43

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices > Practice Defense in Depth

P1318: Practice Defense in Depth

A good practice to manage risk is to have multiple layers of defensive strategies. This reduces risk, since an exploit in
one layer of defense may be stopped by another layer of defense and therefore eliminate or limit the consequences of the
exploit.

As an example, a software system may use Secure Sockets Layer (SSL), Public Key Infrastructure (PKI), WS-
Security along with SOAP, and provide security in integrity using database stored procedures, triggers and views.

Guidance
e (G1301: Practice layered security.

Best Practices

» BP1922: Design systems to have security as a core capability.

Page 44

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices > Apply Secure Coding Standards

P1319: Apply Secure Coding Standards

Develop to a documented coding standard for each target development language and platform to minimize the likelihood
of security vulnerabilities caused by programmer error. This coding standard should include secure coding practices but
may also include standards and policies that improve readability or maintainability.

Guidance

* (G1215: Provide a coding standards document.

Page 45

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices > Apply Quality Assurance to Software Development

P1320: Apply Quality Assurance to Software Development

Quality assurance techniques are a useful tool in identifying and eliminating security vulnerabilities. Source code audits
and peer reviews should be a regular activity during software development and maintenance along with normal testing
activities.

To the extent possible, utilize automated tools to assist in verifying that code meets standards as defined in the applicable
coding standard document. This will result a more repeatable process and shorten the time required for a peer reviews.

Guidance
e G1304: Unit test all code.

Best Practices

 BP1944: Peer review source code.

Page 46

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices > Validate Input

P1321: Validate Input

Proper input validation can eliminate many software vulnerabilities. Do not limit validation to the presentation tier; rather,
all implementations of external facing modules should validate inputs prior to use. This can help prevent attacks including
SQL Injection, Cross-Site Scripting, Buffer Overflows, and Denial of Service.

Validation may include checking lengths of input parameters to prevent buffer overflows. It may also include checking
input against a list of allowed or disallowed characters to prevent execution of arbitrary code.

Guidance

G1032: Validate all input fields.

G1147: Use domain analysis to define the constraints on input data validation.
G1302: Validate all inputs.

G1339: Practice defensive programming by checking all method arguments.
G1349: Validate all input that will be part of any dynamically generated SQL.
G1362: Validate XML messages against a schema.

Page 47

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices > Heed Compiler Warnings

P1322: Heed Compiler Warnings

Many run time errors are detectable during the compilation process. Compiler warnings are often useful in detecting
possible violations of syntax rules and mistakes introduced by developers which may lead to run time errors. For example,
a compiler may warn about use of the assignment operator "=" instead of the equality operator "=="inside an i f
statement or warn about unchecked buffer assignment which could lead to a buffer overflow resulting in the execution of
arbitrary code.

A good security practice to prevent many of these errors is to detect them at compile time by compiling code using

the highest warning level available for the compiler. Compilers often have a warning option which enables additional
warnings, for instance the GCC - Wl | flag and the Java - Xl i nt option. In many cases, these options only enable the
most common warnings and additional flags are required. Detailed understanding of the specific warning capabilities of a
given compiler are necessary to ensure that all of the desired warnings truly are enabled.

Upon receiving an error from the compilation process, developers should modify the code to remove the deficiency

or explicitly document the code stating the reason the code is valid but still produces a warning. Some programming
languages and compilers contain syntax for documenting such exception to compiler warnings and suppressing the
warning from the compiler output.

Note: Compiler warnings may vary depending on the compiler used and the target platform.

Best Practices

» BP1890: Compile code using the highest compiler warning level available.
e BP1891: Develop code such that it compiles without compiler warnings.

» BP1892: Explicitly document exceptions for valid code that produces compiler warnings.

Page 48

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Secure
Coding and Implementation Practices > Handle Exceptions

P1323: Handle Exceptions

Exception objects can convey sensitive information through their message or exception type. Translate information
from exceptions to display meaningful information to users without displaying sensitive information from the exception.
For example, do not expose the file layout of a system to a user through an exception thrown during file access. When
necessary, catch and sanitize internal exceptions before re-propagating them to other parts of the system or displaying
the exception to the user.
Guidance

* (G1094: Catch all exceptions for application code exposed as a Web service.

e (G1340: Log all exceptional conditions.
Best Practices

* BP1893: Return meaningful, but non-sensitive, information from exception handlers.

Page 49

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Data at
Rest

P1360: Data at Rest

Protecting Data at Rest (DAR) has become increasingly critical given Information Technology trends toward utilizing
highly mobile computing devices and removable storage media. Personally Identifiable Information (PIl) or sensitive
government information stored on devices such as laptops, thumb drives and personal digital assistants (PDAS) is often
unaccounted for and unprotected. This can pose a problem if the devices containing Pll are compromised, lost, or stolen.
This has generated negative media attention and potentially exposed sensitive information.

DAR technologies allow protection of data stored on mobile computing devices in the event of theft or other loss by way of
encryption and password protection, thus enhancing information assurance (IA) posture. DoD, concerned not only with
the loss of PII but with all unclassified data contained on mobile devices, issued a memorandum on 3 July 2007 entitled
Encryption of Sensitive Unclassified Data at Rest on Mobile Computing Devices and Removable Storage Media.[R1330]
This memo mandates encryption not only for Pl records, but for all non-publicly released unclassified information
contained on mobile computing devices and removable storage media. The cryptography used in the DAR technologies
must be National Institute of Standards and Technology (NIST) Federal Information Processing Standard (FIPS)
140-2 compliant.

The DoD memo also mandates that all new computer assets procured to support the DoD enterprise include a Trusted
Platform Module (TPM) version 1.2 or higher where such technology is available. TPM is a microcontroller that stores
keys, passwords and digital certificates. It typically is affixed to the motherboard of computers. The nature of this
hardware chip ensures that the information stored becomes more secure from external software attack and physical theft.

A U.S. General Services Agency (GSA) announcement on 14 June 2007 [R1334] notified Chief Information Officers
(ClOs) that SmartBUY awarded Government-wide contractual agreements in May 2007 for DAR encryption commercial
solutions to protect sensitive data. The GSA announcement identified contract awardees and provided a list of DAR
encryption products available through the DoD SmartBUY Enterprise Software Initiative (ESI).

Guidance
» (1381: Encrypt sensitive persistent data.

e (1895: Encrypt all Unclassified DoD Data at Rest (DAR) not releasable to the public stored on mobile computing
devices.

e (1896: Use Data at Rest (DAR) products that are Federal Information Processing Standard (FIPS) 140-2
compliant.

» (G1897: Purchase Data at Rest (DAR) encryption products that are included in the Enterprise Software Initiative
(ESI).

Best Practices
» BP1898: Purchase computers which contain a Trusted Platform Module (TPM).

Page 50

Part 5: Developer Guidance

Part 5: Developer Guidance > Software Security > Policies and Processes for Implementing Software Security > Mobile
Code

P1314: Mobile Code

Mobile code is software obtained from remote systems, transferred across a network, and then downloaded and executed
on a local system without explicit installation or execution by the recipient.

Conventional executable code refers to typical program code or software that is not embedded in data or text and that the
user knowingly executes. Conventional executable code includes both compiled and interpreted code; examples include
compiled C or Ada programs, scripts written in JavaScript or VBScript, Java applications, and binary .exe files.

Mobile code and active content are not interchangeable terms; incorrect usage can result in confusion. Mobile code is
a broad term encompassing code obtained from a remote system that downloads across a network and executes on a
local machine without the user's explicit initiation or knowledge. Active content is the term used to describe executable
code embedded within (or bound to) text or data that executes automatically without explicit user initiation. Examples

of active content include Microsoft Visual Basic for Applications (VBA) macros embedded in Microsoft Word and Excel
files, PostScript commands embedded in PostScript documents, and scripts embedded in Macromedia Director and
Shockwave movies.

As depicted in the figure below, mobile code is comprised of that active content or conventional executable code which
has become "mobile." When active content and/or conventional executable code resides statically on the workstation or
host on which it executes, it is not mobile code. However, when such code originates from an external system, traverses a
network, downloads onto a workstation or host, and executes without explicit user initiation, it becomes mobile code.

Active Conv entional
Content Executable
Code

11218: Mohile Code

Mobile code brings many benefits to a computer system, such as reduction of communication, ability to perform
asynchronous tasks, dynamic software deployment, and temporary and scalable applications. But despite all the
benefits there are many threats that mobile agents bring to a computer system, such as denial of service, destruction,
unauthorized access, breach of privacy, and theft of resources, among others. These threats are related to protection of
the host systems and mobile code systems themselves.

The Department of Defense issued DoD Instruction 8552.01, Use of Mobile Code Technologies in DoD Information
Systems [R1292], in October 2006 to establish and implement DoD mobile code policy. This Instruction identifies DoD-
defined mobile code risk categories, describes their characteristics, and establishes restrictions for the acquisition (to
include development) and use of mobile code technologies assigned to each risk category. It also establishes restrictions
on the use of mobile code in email and emerging mobile code technologies and directs monitoring to detect the presence
of prohibited mobile code. Any prohibited mobile code discovered must be removed.

This instruction applies to all DoD-owned or DoD-controlled information systems used to process, transmit, store, or
display DoD information. This includes mobile devices (e.g., cellular phones, handheld devices) capable of executing
mobile code. Mobile code that originates from and travels exclusively within a single enclave boundary is exempt

from the requirements of DoD Instruction 8552.01. However, if an enclave consists of geographically dispersed
computing environments that are connected by the Unclassified but Sensitive Internet Protocol Router Network
(NIPRNet), Secret Internet Protocol Router Network (SIPRNet), Internet, or a public network, the requirements of this
instruction apply.

Category 1 Mobile Code

Category 1 mobile code technologies exhibit a broad functionality, allowing unmediated access to workstation,
server, and remote system services and resources. Category 1 mobile code technologies have known security
vulnerabilities with few or no countermeasures once they begin executing. Execution of Category 1 mobile code
typically requires an all-or none decision: either execute with full access to all system resources or do not execute
at all.

Page 51

Part 5: Developer Guidance
The following mobile code technologies are assigned to Category 1A (allowed):

* ActiveX controls

» Shockwave movies (including Xtras)

The following mobile code technologies are assigned to Category 1X (prohibited):

« Mobile code scripts that execute in Windows Scripting Host (WSH) (e.g., JavaScript and VBScript downloaded
via a Uniform Resource Locator (URL) file reference or email attachment)

e HTML Applications (e.g., . HTA files) that download as mobile code

e Scrap objects

* Microsoft Disk Operating System (MS-DOS) batch scripts

* Unix shell scripts

« Binary executables (e.g., . exe files) that download as mobile code

The use of unsigned Category 1 mobile code in DoD information systems is prohibited.

Category 2 Mobile Code

Category 2 mobile code technologies have full functionality, allowing mediated or controlled access to workstation,
server, and remote system services and resources. Category 2 mobile code technologies may have known
security vulnerabilities but also have known fine-grained, periodic, or continuous countermeasures or safeguards.

The following mobile code technologies are currently assigned to Category 2:

« Java applets

» Visual Basic for Applications (i.e., Visual Basic for Applications [VBA] macros)
e PostScript

* Mobile code executing in the Microsoft .NET Common Language Runtime

» PerfectScript

e LotusScript

Category 2 mobile code that does not execute in a constrained execution environment may be used in DoD
information systems if the mobile code is obtained from a trusted source over an assured channel. Information
regarding these assured channels is available from DoD Instruction 8552.01.

Category 3 Mobile Code

Category 3 mobile code technologies support limited functionality, with no capability for unmediated access to
workstation, server, and remote system services and resources. Category 3 mobile code technologies may have a
history of known vulnerabilities, but also support fine-grained, periodic, or continuous security safeguards.

The following mobile code technologies are currently assigned to Category 3:

« JavaScript, including Jscript and ECMAScript variants, when executing in the browser
* VBScript, when executing in the browser

e Portable Document Format (PDF)

* Flash

Category 3 mobile code technologies may be freely used without restrictions in DoD information systems.

Emerging Mobile Code Technologies

Emerging mobile code technologies refer to all mobile code technologies, systems, platforms, or languages whose
capabilities and threat level have not yet undergone a risk assessment and been assigned to one of the three risk
categories described above.

Some examples of emerging technologies follow:
Page 52

Part 5: Developer Guidance
» Microsoft's .NET Framework, when used to execute mobile code
« The flat script files used by Java WebStart to control the execution of Java applications

Because of the uncertain risk, the use of emerging mobile code technologies in DoD information systems is
prohibited.

Mobile Code in Email

Mobile code can be embedded in an email body or an email attachment and can be downloaded as part of the
actual email. Alternately, mobile code residing on a remote server can be referenced from within an email body or
attachment and can be automatically downloaded and executed. Some types of mobile code execute automatically
as soon as the user clicks on the message subject or previews the message; others execute when the user opens
an attachment containing mobile code. Email viruses, worms, and Trojan horses typically utilize mobile code
technologies; they are forms of malicious mobile code sent to users via email.

Due to the significant risk of malicious mobile code downloading into user workstations via email, and the ease
of rapidly spreading malicious mobile code via email, the following restrictions apply to all types of mobile code in
email independent of risk category:

e To the extent possible, the automatic execution of all categories of mobile code in email bodies and
attachments is disabled, compliant with DoD mobile code policy implementation guidance.

* To the extent possible, mobile code-enabled software is configured to prompt the user prior to opening email
attachments that may contain mobile code.

Code-Signing Certificate Requirements

DoD code-signing certificates (i.e., their associated private keys) are used to sign Category 1A mobile code that
will reside on DoD-owned or DoD-controlled servers prior to its installation on the servers. When code signing

is used to meet the requirements for Category 2 mobile code that will reside on DoD-owned or DoD-controlled
servers, the mobile code is signed with DoD code-signing certificates prior to its installation on the servers. DoD
code-signing certificates are designated as trusted by default by all Components. DoD-owned and DoD-controlled
servers are trusted sources by default.

Guidance

(G1883: Use a DoD PKI code signing certificate to sign mobile code residing on DoD-owned or DoD-controlled
servers.

G1884: Configure browsers to use Category 1A allowed mobile code per DoD Instruction 8552.01. [R1292]
(G1885: Configure browsers to disable Category 1X prohibited mobile code per DoD Instruction 8552.01. [R1292]
G1886: Disable automatic execution of mobile code in email clients.

G1887: Monitor configured mobile code-enabled software to ensure it is in compliance with DoD Instruction
8552.01. [R1292]

Best Practices

BP1888: Only enable plaintext viewing in email clients on DoD-owned and DoD-operated information systems.

Page 53

Part 5: Developer Guidance
Part 5: Developer Guidance > Data

P1012: Data

There are several common definitions of data; the NESI Glossary definition includes the following points:

» Data is unprocessed information.
» Data is information without context.

But both of these definitions rely on the term "information" which can be a circular definition back to data. To clarify this,
the following model helps create definitions of Information, Knowledge and Wisdom. Data flows into the system as a

set of zeros and ones. The system transforms this initial data into other data that is more understandable from a human
perspective (i.e., a list of double precision, floating point numbers). If the numbers are placed into a context such as itis a
geographic position, then the data starts to become Information. As information is combined together, the result is referred
to as Knowledge (i.e., the knowledge of where one is). When the knowledge can support making decisions, the results are
Wisdom (i.e., how to get from point A to point B).

Data %

[FETETEE |—...| 103 .25, 24.45, 10325 24.46 . |
I 1 GeoPosition
XML
Information 4
CgeopsE tions-
Aong>103, 2% Flomg:-
<Lat2d. 45<flat >
< Fpeoprosi i am =
= CipEapai Lions
Enowledge <oy #1003, 25 Flong >
Wisdom qmq'“)ﬁ_i:;n*j
I know how to get i I
from where [am, | B <Gt ok Cow e >
to Old Town! / e = “long>103. 00 flong >
Point A to B) o D BT
< fmap >
11112

Within NESI, the term Data covers the entire data spectrum (i.e., Information, Knowledge and Wisdom) with a focus on
the transfer of data between components. NESI helps Program Managers understand and implement DoD governing
directives for net-centricity and interoperability to include the DoD Net-Centric Data Strategy (NCDS).

Generic data guidance statements include guidelines relative to basic functions associated with the definition of data and
the most general categories of data types. Examples of the most basic data functions include data modeling and domain
analysis. The most general categories of data types include relational database data and XML.

Data Exposure defines the steps necessary to set up the metadata infrastructure associated with a net-centric
data strategy. This infrastructure permits the exposure (i.e., visibility) of net-centric data to the user community. This
infrastructure will be set up once but maintained to include the following:

* Registry where the metadata will reside
» Repository where the data will reside
* Rules applicable to the tagging of data

Tagging and metadata rules follow from Data Categorization. Generic Data Categorization includes data types that
adhere to XML Schema rules. Specialty Data Categories, such as Electronic Data Interchange (EDI) and Binary XML
include data types that do not fit in the current XML paradigm but for which special XML extensions may be developed.

Data Publishing defines the steps necessary to make data available within the net-centric data strategy infrastructure.
It requires the project to have a Community of Interest (COIl), a model of the data associated with the project and an
ontology which taken together can be used as a basis for structural metadata. Based on the Data Categorization rules
promulgated in the data exposure section appropriate tags are determined and applied to the data.

Page 54

Part 5: Developer Guidance

There are many ways to persist data to include storing data on a file system or in a database (e.g., hierarchical
databases, object-oriented databases, native XML databases, and relational databases). For more detailed
information regarding data within a Node, see the Node Data Strategy [P1329] perspective.

Detailed Perspectives

+ XML [P1083]

* Metadata Registry [P1050]
« Data Modeling [P1003]

« Metadata [P1049]

« Relational Database Management Systems [P1063]

Page 55

https://nesi.spawar.navy.mil/nesix//View/P1329

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML

P1083: XML

The Extensible Markup Language (XML) is a World Wide Web Consortium (W3C) initiative that allows encoding

data and information with meaningful structure and semantics into a document that computers and humans can read
easily. XML is ideal for information exchange and is easily extended to include other data types. The ubiquitous nature

of XML within existing and proposed DoD projects has spawned a lot of activity to capture guidelines and requirements
that facilitate net-centricity and interoperability. Many of these activities have not been finalized and are "emerging" from a
NESI viewpoint. This NESI Perspective leverages the work done by Roger Costello and colleagues at xFront.com. It is by
no means complete, but it does provide a starting point for additional DoD XML work.

There are two key measures of XML instance document correctness: being well-formed and valid. Those concepts and
others are introduced in the perspectives in the following subsection list.

Detailed Perspectives

e XML Syntax [P1095]
¢ XML Semantics [P1096]
XML Processing [P1105]

Page 56

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Syntax

P1095: XML Syntax

The syntax of an XML document is a hierarchical collection of XML elements that identify the name of the data within
the XML document and the value associated with the element. Elements can have attributes and be nested within other
elements. The following is a simplistic XML document displayed in ASCII with the major syntactical components labeled.

Element Element Attribute Attribute Attribute
Begin Mame Name Walue List
I_VM
<Meeti ngTimne l
timemo me="T5T "
Nested style="mdlitary” [~ %
Elements 2 W -
< fMeet ingTime:>
<Thrpose>TH souwss Budget < /Purpose >
“Location ndnth floor-<f Locat ion -
I—u < fiemo > &

Element Element
End Data
11173
Guidance

e G1724: Develop XML documents to be well formed.

Best Practices
» BP1258: Explicitly define the encoding style of all data transferred via XML.
* BP1752: Place dynamic XML element data within an XML CDATA section.

Examples

An example of an XML instance document is the following weather information XML. It can be thought of as a complex
data structure that contains a weather station's data.

Page 57

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Semantics

P1096: XML Semantics

The semantics of an XML document are limited to the structural composition of data, the relationships of the structures to
each other, and the rules governing data content. A full semantic interpretation of the XML content must be left to humans
or tools that humans have written that connote some meaning to the data. For example, the semantics captured by XML
might define a weather station that is comprised of air temperature, soil temperature, anemometer and hygrometer and
the values and units associated with these values. XML does not capture what this data means semantically to a pilot or
soldier.

XML Schema Document

Blue Prints

XML Instance Document

1174

The semantics of any XML instance document are captured in another XML document called the schema which is also
defined using XML; see the two perspectives in the following subsection list.

Detailed Perspectives

e XML Schema Documents [P1097]
« XML Instance Documents [P1104]

Page 58

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Semantics > XML Schema Documents

P1097: XML Schema Documents

An XML Schema is a W3C specification for defining the semantics and structure of XML documents. For a discussion
of the grammar that governs XML see the XML Syntax [P1095] perspective. The semantics are limited to the structural
composition of data, the relationships of the structures to each other, and the rules governing data content. More detailed
discussions of the schema documents are in the related perspectives in the following subsection list.

Detailed Perspectives

e Using XML Substitution Groups [P1102]
e Defining XML Types [P1101]

e XML Schema Files [P1099]

e Using XML Namespaces [P1100]

» Defining XML Schemas [P1098]

¢ Versioning XML Schemas [P1103]

Page 59

Part 5: Developer Guidance

Part 5: Developer Guidance > Data > XML > XML Semantics > XML Schema Documents > Using XML Substitution
Groups

P1102: Using XML Substitution Groups

Substitution groups allow using elements defined in externally defined and controlled schemas as interchangeable
elements in new schemas. More specifically, elements can be assigned to a special group of elements that are said to
be substitutable for a particular named element called the head element. Elements in a substitution group must have the
same type as the head element, or they can have a type that has been derived from the head element's type. See the
XML Schema Part 0: Primer Second Edition at http://www.w3.0org/TR/xmIschema-0/#SubsGroups for further information.

Substitution groups allow any of the element members' substitution group elements to participate as a member of

a more abstract concept. For example, in the following XML, Recor di ngMedi umis the name of the substitution
group. The members of the group are the Recor di ngMedi umelement itself and 35mm di sk and 3x5. Anywhere that
Recor di ngMedi umis used as a reference, 35mm di sk and 3x5 can also be used. For a complete example study
the following diagram that defines a Canmer aMedi unSupport element that has a single sequence comprised of the
Recor di ngMedi umG oup substitution group.

...... Recording COLXSD
Type .‘
="' R oo & ngdied L wnilype *
abstract="true">
Recording COI Subgroup X8D
complexl ype nane=" 25wl ype ">
<aerd : comp LenCond-ent: >
“2segd : st nerl om.
B =" Recordingtiedi wnTipe * >
Recording COI Subgroup XSD

$
gl
e

E

(< fremdt: complexType)

-

Camera COT X5D
Fraerd: elerent e "Feoood g e di uniz oo
abet ract="t rue "
type="r: Recordingfedi wnlype " >

Mote: The Camers GOl can Foseed: e lement
dafin mumme= " 1 5mm"
. B.I:IEJ":SD that can sibstituti onroup= * Becordingdiedi unbrowp
use argr of the other X350 & p———
types mterchangeshle, lesmd: e Lament:
even if the original X3De name="disk"

sbstituti oniroup= " Becoedingdiedi unbrowp
type="b: disklype" />
Foseed: e lemant
mane=" Tx"
subet ituti onGroup= " Becordinghiedi unbrowp
type="c: IuSType " f>
Famd: element nane="Canerabedi unSepport. >
< aedl | e L Ty >
3 ;e qpuenCe
<mmdelonent ref="Eecordimgied wnlroup />
2 vl SR
< faoil: cxmmpl T ypee -
ke faesl - el e k. o

did ot plan for such use

1175

Guidance
» G1731: Only reference XML elements defined by a Type in substitution groups.
» G1744: Only reference abstract XML elements in substitution groups.
» G1745: Append the suffix Group to substitution group XML element names.

Page 60

http://www.w3.org/TR/xmlschema-0/#SubsGroups

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Semantics > XML Schema Documents > Defining XML Types

P1101: Defining XML Types

The W3C defined datatype as follows:

"A datatype is a 3-tuple, consisting of a) a set of distinct values, called its value space, b) a set of lexical representations,
called its lexical space, and c) a set of facets that characterize properties of the value space, individual values or lexical
items."

[See W3C "XML Schema Part 2: Datatypes Second Edition," Section 2.1, http://www.w3.0rg/TR/xmlschema-2/
#typesystem]

There are two kinds of datatypes definable within XML: Primitive and Derived. Primitive datatypes are not defined in terms
of other datatypes while Derived datatypes are defined in terms of other datatypes. All datatypes can be further classified
as Built-in and User-derived. Built-in datatypes are those which have been defined by the W3C in XML Schema Part 2:
Datatypes Second Edition. User-derived datatypes are those defined by individual schema designers.

The guidance included in this perspective is for primitive and derived datatypes designed by individual schema designers.

Guidance

» G1727: Provide names for XML type definitions.

» (G1728: Define types for all XML elements.

* (G1729: Annotate XML type definitions.

e G1740: Append the suffix Type to XML type names.
Best Practices

» BP1732: Follow the Upper Camel Case (UCC) naming convention for XML Type names.

Page 61

http://www.w3.org/TR/xmlschema-2/#typesystem
http://www.w3.org/TR/xmlschema-2/#typesystem
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Semantics > XML Schema Documents > XML Schema Files

P1099: XML Schema Files

Schema definitions are usually captured in files. The following guidance applies to those files which actually contain the
schema definitions.

Guidance

« (G1735: Use the . xsd file extension for files that contain XML Schema definitions.

e (G1736: Separate document schema definition and document instance into separate documents.

Examples

<?xm version="1.0"?>
<xsd: schema xm ns: xsd="http://ww.w3. or g/ 2001/ XM_Schena"
t ar get Nanespace="htt p: // ww. caner a. or g"
xm ns: ni kon="http://wwm. ni kon. cont'
xm ns: ol ynmpus="http://wwm. ol ynpus. conf
xm ns: pentax="http://ww. pent ax. cont'
el ement For nDef aul t =" unqual i fi ed" >
<xsd:i nport nanespace="http://ww. ni kon. conl'/ >
<xsd: i nport nanespace="http://ww. ol ynpus. coni'/ >
<xsd: i nport nanespace="http://ww. pentax. coni'/>
<xsd: el enent nane="Canera">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="body"
t ype="ni kon: BodyType"/ >
<xsd: el enent nane="| ens"
type="ol ynpus: LensType"/ >
<xsd: el enent nane="Manual Adapt er "
t ype="pent ax: manual _adapter_type"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Page 62

Part 5: Developer Guidance

Part 5: Developer Guidance > Data > XML > XML Semantics > XML Schema Documents > Using XML Namespaces

P1100: Using XML Namespaces

A namespace defines the scope for schema components and de-conflicts the use of schema components. Qualifying
prefixes simplify the use of namespaces in names by appending a qualifier onto the beginning of the name that is mapped
to a particular schema. Namespaces can become quite confusing if they are not used consistently.

Guidance

(G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

G1383: Use aregistered namespace in the XML Gallery in the DoD Metadata Registry.

G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.
G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.
G1737: Define a target namespace in schemas.

G1738: Define a qualified namespace for the target namespace.

Best Practices

BP1739: Use the xsd qualifying prefix for XML Schema namespace.
BP1741: Do not provide a schema location in import statements in schemas.
BP1742: Use the xsi qualifying prefix for XML Schema instance namespace uses.

Page 63

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Semantics > XML Schema Documents > Defining XML Schemas

P1098: Defining XML Schemas

While it is possible to use Document Type Definitions (DTD) to convey much of the same information as the XML
Schema Definition (XSD), XSDs have several distinct advantages which are very useful in terms of interoperability.
XML Schemas have richer support for defining and using types than DTDs which capture domain information such as
allowable ranges and units. For example, XSDs can define an elevation type with values limited to meters in the range of
0 to 12,000.

Guidance

* (1045: Separate XML data presentation metadata from data values.

e G1725: Develop XML documents to be valid XML.

* G1726: Define XML Schemas using XML Schema Definition (XSD).

* G1730: Follow a documented XML coding standard for defining schemas.
Best Practices

» BP1732: Follow the Upper Camel Case (UCC) naming convention for XML Type names.
» BP1733: Follow the Upper Camel Case (UCC) naming convention for XML element names.
e BP1734: Follow the Lower Camel Case (LCC) naming convention for XML attributes.

Page 64

Part 5: Developer Guidance

Part 5: Developer Guidance > Data > XML > XML Semantics > XML Schema Documents > Versioning XML Schemas

P1103: Versioning XML Schemas

XML Schemas capture the semantics of the data that the schemas define. As the understanding of the data and its
interrelationships evolves, the need to redefine the semantics captured by the schema is inevitable. This evolution can
have a wide ranging ripple effect throughout a large widely distributed system or family of systems. Therefore, the uniform
managing of schema versions is essential.

Guidance

G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.
G1019: Deprecate public interfaces in accordance with a published deprecation policy.

G1727: Provide names for XML type definitions.

G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema definition.
G1754: Give each new XML schema version a unique URL.

Page 65

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Semantics > XML Instance Documents

P1104: XML Instance Documents

An XML instance document is an XML document which is defined by an XML Schema but is populated with the actual
data whereas the schema is the definition of the structure and semantics of data (metadata).

Guidance

* G1725: Develop XML documents to be valid XML.

e (G1736: Separate document schema definition and document instance into separate documents.
Best Practices

* BP1742: Use the xsi qualifying prefix for XML Schema instance namespace uses.
* BP1743: Use .xml as the file extension for files that contain XML Instance Documents.

Page 66

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Processing

P1105: XML Processing

One of the primary benefits of using XML is that it can be read by humans or processed by software. The perspectives in
the following subsection list pertain to XML processing.

Detailed Perspectives

» XPath [P1107]

e XSLT [P1106]

e Parsing XML [P1109]

¢ XML Validation [P1110]

Page 67

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Processing > XPath

P1107: XPath

A valid XML Document is a representation of a Document Object Model (DOM) tree structure. Each of the XML
elements is considered a node with the tree. XML Path Language (XPath) is a succinct and elegant way of addressing
the individual nodes (i.e., elements) within the tree (i.e., document) or to perform basic computations on the Element Data
within the document. The following is a very simplistic example of how an XML Document and XPath work together. The
XML instance document contains the data and the XPath provides the instructions on how to traverse the document.

XML Instance Document
<libray>
<o ks >
“hook>
titlesCeltic Empire<ftitle
<author >Peter Berresford Ellis</author:>
<edition>1-<fedition:
<ISBN:0-89089-157—4< fLSBN:
< fbook>
< fbooks>
<staff>
“librarian
<title>Sciemce Specialist<ftitle:
<mame xJohn 0. Public</name:

< f1ibvari ans
<fotaff>
< flibeary>
L d
XPath Expression
Results [f#title
Celtic Enpire |

1172

For a more detailed description of XPath, see the following W3C location: http://www.w3.0rg/TR/xpath; there also is an
XPath tutorial at http://www.w3schools.com/xpath/default.asp.

Guidance

* G1756: Isolate XPath expression statements into the configuration data.

Best Practices
» BP1757: Do not ignore hamespace prefixes in XPath expressions.
e BP1758: Make names in descendant expressions unique within an XML document.

Page 68

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Processing > XSLT

P1106: XSLT

XSL Transformations (XSLT) allow XML data transformation using the functional eXtensible Stylesheet Language
(XSL).

XSL is dependent on XML Path Language (XPath) to address nodes within the input document. For XPath guidance and
best practices see the XPath [P1107] perspective. The following example produces HTML image tag from an image XML
element with optional height and width attributes.

~ Image
Height ="100">
newi i f
< fInincpe >

<aesl:btemplate matche="TImsge ">

<=l celoment nane="ing® >
<usl: attribute name="src">
Fimagesf<xsl walue-of select=", ">
<fa=El attribute -
<aEl:if test="EAdth" >
“aml: attribut e mame—"width" >
“yml:valwe-of select="["Hdth"f>
<l at tedbute -
“fal i >
aElcif test="AHeight” >
aml: attribute mames"lheight >
<3l s wal we-of uﬂ.cct-"ElE:i.ﬂlt-"f)
< faem] kb ik >
<l ciE>
< faml -element >
< fmpan
< faeml - templ at o>

<img sro=fimage s nesd gl £ hedghte 1000

11177

Templates

Use templates to transform particular sections of an XML document tree. XSLT requires at least one template
which matches to an absolute path of an element (e.g., /). Inside of a template, match other templates by
using xsl : appl y-t enpl at es. Passing an XPath query to the select parameter of xsl : appl y-t enpl at es
constructs a list of nodes by which templates are compared and executed.

XSLT 2.0

XSLT 2.0 improves on XSLT 1.0 and adds functionality that was previously only achieved through proprietary
language extensions.

Some of the more significant improvements include the following:

» Backwards-compatibility
* Improved XPath functions

* Regular expressions

Page 69

Part 5: Developer Guidance
« Schema validation to temporal and result trees
e Multiple outputs
* Aggregation
» Strong data typing

Guidance

* (G1746: Develop XSLT style sheets that are XSLT version agnostic.
* G1751: Document all XSLT code.

e (G1755: Use accepted file extensions for all files that contain XSL code.

Best Practices

* BP1747: Use the xsl qualifying prefix for XSLT namespace.

* BP1748: Separate static content from transformational logic in XSLTs.
» BP1749: Use xsl:include for including XSL transforms.

» BP1750: Use xsl:import for reusing XSL code.

Page 70

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Processing > Parsing XML

P1109: Parsing XML

One advantage of XML is that a variety of standard parsers are available to parse documents. Another advantage is that
the consumer of the XML document is free to choose the type of parser to use.

A couple of common types of XML parsers include the Document Object Model (DOM) and Simple API for XML (SAX)
parsers. The DOM parser uses a tree-based approach, while the SAX parsers use an event-based approach. Both
approaches have advantages and disadvantages depending the application.

In addition to the various types of XML parsers, there are multiple implementations of each types of parser. This provides
the developer great flexibility in choosing an XML parser implementation. To take advantage of this flexibility, the
developer must take care when developing software to allow for changing the XML parser throughout the life-cycle of

the software. One way to do this is to provide a wrapper or adapter class that isolates the XML parser implementation
allowing for changes to the XML parser during development or deployment.

Best Practices

* BP1769: Provide wrapper or adapter classes to isolate XML parser implementations.

Page 71

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > XML > XML Processing > XML Validation

P1110: XML Validation

One advantage of XML is that it allows for validation of XML instance documents. Validation can occur at the producer
and/or consumer or anywhere in-between.

Guidance
* G1725: Develop XML documents to be valid XML.

Best Practices

» BP1265: Validate XML documents during document generation.

Page 72

Part 5: Developer Guidance

Part 5: Developer Guidance > Data > Metadata Registry

P1050: Metadata Registry

A Metadata Registry is a central repository for storing and maintaining metadata definitions. A metadata registry typically
has the following characteristics:

Itis a protected area where only approved individuals may make changes
It stores data elements that include both semantics and representations
The semantic areas of a metadata registry contain the meaning of a Data Element with precise definitions

The representational areas define how the data is represented in a specific format such as within a database or a
structure file format such as XML

Metadata registries often are stored in an international format called ISO-11179.

A metadata registry is frequently set up and administered by an organization's data architect or data modeling team.

The DoD Metadata Registry provides a common source of data information required to promote interoperability in the
Net-Centric Data Environment.

In the Net-Centric Data Strategy, data sources are called Data Assets which are divided into two generic areas:

The data area includes the following:

XML stored in repositories (files)
Database data

Data services

Data streams (real time)

Sensor data

Message data (includes EDI)

The metadata area includes the following:

Metadata stored in registries

 UDDI

» Electronic Business Using eXtensible Markup Language (ebXML)
« DoD Metadata Registry

e Other ISO/IEC 11179 Registries

< Discovery metadata stored in Catalogs

DoD Discovery Metadata Standard (DDMS)

Interface Metadata (WSDL)

Structural Metadata (XSD)

Data comes in many forms. It can be simple or complex; structured or unstructured in nature.

Simple Structured Data has an uncomplicated data structure . All requisite metadata is provided and simple data types
only are used (e.g., integers, long integers, strings, and simple lists).

Simple Unstructured Data has uncomplicated data structure but not all requisite metadata is provided.

Complex Structured Data has well-defined metadata. It includes data represented in XML documents with deeply
hierarchical and recursive structures. Complex data can be represented in a complex data structure or can be mapped
into a relational or flat structure with additional metadata provided to represent the complex relationships. Although
complex structured data is generically a property of object oriented databases, the Complex Data Structures can be filled
from any source.

Page 73

Data

Part 5: Developer Guidance

XML files

defined

e Inte

by XML Schemas (XSDs)

rface

Metadata stored in DoD Repository

XML Schemas (XSDs)
Discovery metadata

« WSDL
 UDDI
Web Service Source Code

XSDs include element validation and descriptions

XSDs may import other XSDs
XSDs are validated

Complex Structured Data follows all of the XML rules.

Complex Semi-Structured Data has partial metadata. It includes data defined in COBOL copybooks and Electronic Data
Interchange standards ANSI X.12 and Health Level 7 (HL7). Semi-structured data can be as complex or more so as any
Complex Structured data. It can map into or be XML. It may also be missing some Metadata or an XSD.

Complex Unstructured Data has little or no metadata. It includes data in binary files, spreadsheets, documents, and
print streams.

Guidance

G1125:
G1141:
G1382:
G1383:
G1384:
G1385:
G1386:

Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.
Base data models on existing data models developed by Communities of Interest (COI).

Be associated with one or more Communities of Interest (COIs).

Use aregistered namespace in the XML Gallery in the DoD Metadata Registry.

Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.
Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.
Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata

Registry, using those in the relational database technology which can be reused in the Program.

G1387:

Identify data elements created during Program development for registering in the Data Element Gallery of

the DoD Metadata Registry.

G1388:
G1389:

Use predefined commonly used database tables in the DoD Metadata Registry.
Publish database tables which are of common interest by registering them in the Reference Data Set

Gallery of the DoD Metadata Registry.

G1391:

Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIls) during

the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

Best Practices

BP1392:
BP1855:
BP1856:
BP1857:
BP1858:
BP1859:

Register services in accordance with a documented service registration plan.
Identify types of data items for potential sharing external to the program.
Identify specific data items for potential sharing external to the program.
Prioritize data items for potential sharing external to the program.

Publish preliminary program data-related development plans.

Create external representations for sharable data items.

Page 74

Part 5: Developer Guidance
« BP1860: Create metadata representations for sharable data items.
» BP1861: Publish data access services that implement interfaces to shared data.
» BP1863: Make shareable data assets visible, even if they are not accessible.

Page 75

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > Data Modeling

P1003: Data Modeling

Modeling is an essential step in understanding the data that will comprise a system. Before implementing a system, it
is important to understand the basic data elements and the relationships of the elements. The end products of data
modeling can be XML schemas, RDBMS schema definitions or the data portion of objects.

Rather than conducting data modeling efforts in isolation, seek out and identify relevant communities of interest (COIs).
Doing so will provide for more effective data models that build upon lessons learned, provide lessons learned to the
greater community, reduce costs through reuse, and enhance interoperability through the use of common semantics
across the community. One way to do this is to base new data models on the terminology published by relevant COls
listed in the Taxonomy Gallery of the DoD Metadata Registry. Another is to look for relevant COls outside of the DoD.
Examples of common high level COI data models follow.

Universal Core (UCore)

UCore is a federal information sharing initiative that supports the National Strategy for Information Sharing
(available at http://georgewbush-whitehouse.archives.gov/nsc/infosharing/index.html) and associated
Departmental and Agency strategies. UCore enables information sharing by defining an implementable
specification (XML Schema) containing agreed upon representations for the most commonly shared and
universally understood concepts of who, what, when, and where.

UCore is designed to be simple to understand, explain, and implement. It is small, containing a minimal set of
objects with broad applicability across a wide range of domains. UCore is built on an extensible framework that
permits users to build more detailed exchanges tailored to their mission or business requirements. UCore is based
on and leverages existing commercial and governmental standards. The UCore validation processes and tools
provide a means to achieve consistently definable levels of interoperability, promoting machine understanding
between both anticipated and unanticipated users.

For more information on UCore, including developer guides, tutorials, examples, and validation tools, see the
Universal Core 2.0 site: http://metadata.ces.mil/ucore/ (user registration required).

National Information Exchange Model (NIEM)

The NIEM represents a partnership of the U.S. Departments of Justice and Homeland Security. It is designed to
develop, disseminate and support enterprise-wide information exchange standards and processes that can enable
jurisdictions to share critical information effectively in emergency situations, as well as support the day-to-day
operations of agencies throughout the nation. NIEM objectives include the following:

« Bring stakeholders and communities of interest together to identify information sharing requirements in day-to-
day operational and emergency situations

« Develop standards, a common lexicon and an on-line repository of information exchange package documents
to support information sharing

« Provide technical tools to support development, discovery, dissemination and reuse of exchange documents

* Provide training, technical assistance and implementation support services for enterprise-wide information
exchange

For more documentation, training, and tools to support the NIEM, see the NIEM site: http://www.niem.gov.

Cursor on Target (CoT)

CoT is a data strategy for enabling DoD systems to exchange much needed time sensitive position or what,
when and where information. The CoT data strategy is based on a terse CoT XML Schema and a set of sub-
schema extensions. The CoT schema is available on the DoD Metadata Registry [R1227]. Further CoT information
is available at http://cot.mitre.org (user registration required).

Joint Consultation, Command and Control Information Exchange Data Model
(JC3IEDM)

Page 76

http://georgewbush-whitehouse.archives.gov/nsc/infosharing/index.html
http://metadata.ces.mil/ucore/
http://www.niem.gov
http://cot.mitre.org

Part 5: Developer Guidance

JC3IEDM is a data model developed by the Multilateral Interoperability Programme (MIP) Data Modeling Working
Group. The aim of the MIP is to achieve international interoperability of Command and Control Information
Systems (C2IS) at all levels. The MIP cooperates to develop a data modes that describe the information that allied
component commanders need to exchange (both vertically and horizontally) and serve as the common interface
specification for the exchange of essential battlespace information. The JC3IEDM is evolving from the Command
and Control Information Exchange Data Mode (C2IEDM) data modeling efforts. Both data models are available on
the MIP site.[R1070]

Common Alerting Protocol (CAP)

CAP is a simple but general format for exchanging all-hazard emergency alerts and public warnings over all kinds
of networks. CAP is developed and managed by Organization for the Advancement of Structured Information
Standards (OASIS). CAP allows a simultaneous dissemination of consistent warning message over many
different warning systems, thus increasing warning effectiveness while simplifying the warning task. CAP facilitates
the detection of emerging patterns in local warnings of various kinds, such as might indicate an undetected hazard
or hostile act, and CAP provides a template for effective warning messages based on best practices identified in
academic research and real-world experience. The current version of the Common Alerting Protocol is available at
http://www.0asis-open.org/specs/.

Naval Architecture Elements Reference Guide (NAERG)

NAERG is a key component of the coordinated set of activities intended to create a Department of the Navy

(DON) Enterprise Architecture (EA). The NAERG supports the consistent and aligned development of architecture
products across the DON, by implementing a common and reusable lexicon for naming the various elements within
the federated DON EA. Further information see the NAERG site: https://sadie.spawar.navy.mil/Wiki/NAERG (DoD
PKI Certificate required).

Guidance

G1141: Base data models on existing data models developed by Communities of Interest (COI).

G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

G1147: Use domain analysis to define the constraints on input data validation.

G1148: Normalize data models.

G1382: Be associated with one or more Communities of Interest (COIs).

G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

G1391: Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during
the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

Best Practices

BP1145: Use vendor-neutral conceptual/logical models.

BP1254: For command-and-control systems, use the names defined in the Joint Command, Control and
Consultation Information Exchange Data Model (JC3IEDM) for data exposed to the outside communities.

BP1394: Identify, publish and validate data objects exposed to the enterprise early in the data engineering process
and update in a spiral fashion as development proceeds.

BP1396: Develop high-level conceptual data models for new systems prior to Milestone A based on the business
process context in which the system will be used.

BP1397: Identify and develop use cases or reuse existing use cases as appropriate as early in the data engineering
process as possible to support data model development.

BP1398: Develop Interaction models as appropriate.
BP1400: Programs will use authoritative metadata established by the Joint Mission Threads (JMTs) when available.

Page 77

http://www.oasis-open.org/specs/
https://sadie.spawar.navy.mil/Wiki/NAERG

Part 5: Developer Guidance
BP1857: Prioritize data items for potential sharing external to the program.
BP1858: Publish preliminary program data-related development plans.
BP1859: Create external representations for sharable data items.
BP1860: Create metadata representations for sharable data items.

BP1901: Use Universal Core (UCore) as the basis for information exchange models for systems that exchange
internal data with external systems.

Page 78

Part 5: Developer Guidance
Part 5: Developer Guidance > Data > Metadata

P1049: Metadata

Services and data to be mediated should always be formally defined, and typically this is done with some form of
computer readable metadata.

NESI currently requires metadata, defined primarily as XML Schema and Web Services Description Language
(WSDL) documents, be registered in the DoD Metadata Registry. NESI further specifies rules system developers must
follow in developing XML Schema, including the requirement to search the registry for existing schemas that can be
reused, aligning new schemas as closely as possible to existing similar schemas, reviewing schemas with the DoD XML
Namespace Manager, and looking for other relevant Government and industry schemas that could be leveraged. The
purpose is to avoid unnecessary duplication of effort and improve the success of future interoperability through common
definitions.

The NCES Data Strategy team, including the maintainers of the DoD Metadata Registry, strives to create a common data
model, per Community of Interest (COI); but recognizing the difficulty in accomplishing that goal the team promotes

the use of "mediation” from one schema to another. NCES currently implements mediation simply through the use of
eXtensible Style Language Transformations (XSLT) to transform XML documents from one schema to another.

This focus on centrally managed data models is not viable as a long term solution to mediation since it requires
substantial effort to define accurate transformations, and the underlying "business objects" almost always lose information
in the process. The vision of a non-redundant object model is considered by most experts as unachievable due to social
and communications barriers among the hundreds of organizations working as part of or with the Federal Government
and the DoD in particular.

Accepting the fact that use of the DoD Metadata Registry is a requirement gives rise to posing the question should

there be a new FORCEnet COIl "namespace," or should the FORCEnet activities simply try to find suitable existing
namespaces in which to register their metadata. Clearly, some FORCEnet applications will be able to leverage some of
the existing schemas. But are there a significant number of new schemas to be registered, and if so can they be aligned
to existing COl namespaces or will there be unacceptable barriers to introducing the changes required.

Moreover, the technologies for application and system development continue to improve to allow more rapid turnaround
of new software capabilities, and in fact software developers are finding less of a need to work at the XML document
level at all. Model Driven Architecture (MDA) technology, for example, is becoming mainstream, and interfaces are
being developed visually, with the schemas automatically generated according to the graphical model. The creation

of interfaces and schemas is becoming more of a dynamic activity, and the projected ad hoc interoperability of loosely
coupled components, enforced by the FORCERnet vision, will mean bureaucratic processes such as those introduced by
the DoD Metadata Registry may introduce significant risk.

Striving to minimize the number of schema variations by leveraging common schemas across applications is laudable and
should be encouraged. However, more advanced solutions to mediation are critical to the interoperability problem where
common schemas do not exist. This may require a more dynamic process for registering metadata, without restrictions.
An argument can be made for a FORCEnet COl in this regard.

As promoted by the NCES Data Strategy team, XSLT is the common practice for mediation. However, XSLT only solves
a single point-to-point integration, and it is limited in its ability to support semantic validation. The Web Services Business
Process Execution Language (WS-BPEL) [R1347] is an OASIS standard for defining specific interactions among services
using documents defined through schema. It can use XSLT and other technologies to perform transformation of data
elements, and semantics are implicit through their use. However, each BPEL definition is limited even further to a single
use-case for the data.

Reduce the work and the errors associated with mediation by taking the concept to the next logical step:

include document and service metadata that encodes the semantic intent. COls which follow best practices for indexing
and otherwise generating semantic metadata (see [R1047]) can reduce mediation issues. Semantic automation tools are
emerging, such as the Web Ontology Language (OWL),[R1048] that assist in defining the semantic relationships and
constraints in schemas.

These definitions can be used to automate the transformations between applications and services, to validate the
transformations, and to support much more intelligent human-computer interaction. For example, a PEO C4l and Space
sponsored program developed the Service Mediation Description specification for the DISA Net-Centric Capabilities Pilot.

Page 79

Part 5: Developer Guidance

This metadata document automatically generated user interfaces (input forms, data result tables, and map overlays) from
semantically-described Web services and schemas, using a document format derived from WS-BPEL and other Web
standards.

Best Practices

» BP1392: Register services in accordance with a documented service registration plan.

» BP1408: Use a semantic description language such as Web Ontology Language (OWL) or Resource Definition
Framework (RDF) to represent an Ontology.

» BP1865: Provide sufficient program, project, or initiative metadata descriptions and automated support to enable
mediation and translation of the data between interfaces.

Page 80

Part 5: Developer Guidance

Part 5: Developer Guidance > Data > Relational Database Management Systems

P1063: Relational Database Management Systems

A Relational Database Management System (RDBMS) is a collection of data items organized as a set of formally-
described tables. This permits accessing and reassembling data in many different ways without having to reorganize the
database tables. It is important to ensure data quality and to access data quickly, using simple, easily understood dynamic
gueries. Towards these ends, an RDBMS offers such services as triggers, stored procedures, indices, constraints,
referential integrity, efficient storage, and high availability features.

Database Independence

The Structured Query Language (SQL) allows for some portability of database access code when accessing
various database products. It is important to use SQL standards that are open and well supported by database
vendors and to avoid using proprietary extensions to the SQL standards. To further promote database
independence, access the database only through open standard interfaces such as Open Database
Connectivity (ODBC) or Java Database Connection (JDBC). This supports the goal of being able to swap

out data sources and/or connect to multiple data sources without affecting the application or increasing software
maintenance costs. Data-level adapters allow applications to access data through database calls that are native to
the requesting application. At this point, the business logic can be shared with other data sources. This positions
the application to move business logic from the database to the middle tier to support database independence.

Database Data Modeling

Data modeling is important for RDBMs as it improves database performance, improves the interoperability of
the data, and allows for future growth and use of the RDBMS. The Data Modeling [P1003] perspective provides
guidance for data modeling in addition to the guidance provided in this perspective.

Guidance

G1014: Access databases through open standard interfaces.

G1132: Implement the data tier using commercial off-the-shelf (COTS) relational database management
system (RDBMS) products that implement a Structured Query Language (SQL).

G1141: Base data models on existing data models developed by Communities of Interest (COI).

G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

G1146: Include information in the data model necessary to generate a data dictionary.

G1147: Use domain analysis to define the constraints on input data validation.

G1148: Normalize data models.

G1151: Define declarative foreign keys for all relationships between tables to enforce referential integrity.
G1151: Define declarative foreign keys for all relationships between tables to enforce referential integrity.
G1153: Separate application, presentation, and data tiers.

G1154: Use stored procedures for operations that are focused on the insertion and maintenance of data.
G1155: Use triggers to enforce referential or data integrity, not to perform complex business logic.

Best Practices

BP1139: Do not use proprietary SQL extensions.
BP1140: Use SQL-2003 features in preference to SQL-92 or SQL-99.

BP1143: Use a database modeling tool that supports a two-level model (Conceptual/Logical and Physical) and
ISO-11179 data exchange standards.

BP1145: Use vendor-neutral conceptual/logical models.
BP1227: Do not allow installation of MSMQ-dependent clients.
BP1248: Follow a naming convention.

Page 81

Part 5: Developer Guidance

BP1249: Do not use generic names for database objects such as databases, schema, users, tables, views, or
indices.

BP1250: Use case-insensitive names for database objects such as databases, schema, users, tables, views, and
indices.

BP1251: Separate words with underscores.
BP1252: Do not use names with more than 30 characters.

BP1253: Do not use the SQL:1999 or SQL:2003 reserved words as names for database objects such as
databases, schema, users, tables, views, or indices.

BP1254: For command-and-control systems, use the names defined in the Joint Command, Control and
Consultation Information Exchange Data Model (JC3IEDM) for data exposed to the outside communities.

BP1255: Use surrogate keys.

BP1256: Use surrogate keys as the primary key.

BP1257: Place a unique key constraint on the natural key fields.
BP1258: Explicitly define the encoding style of all data transferred via XML.
BP1259: Use indexes.

BP1260: Define a primary key for all tables.

BP1261: Monitor and tune indexes according to the response time during normal operations in the production
environment.

BP1262: In the case of Oracle, define indexes against the foreign keys (FK) columns to avoid contention and
locking issues.

BP1263: Gather storage requirements in the planning phase, and then allocate twice the estimated storage space.
BP1264: For high availability, use hardware solutions when geographic proximity permits.

Page 82

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces

P1058: User Interfaces

The user interface represents all the components used to generate an interactive display that enables users to
communicate with applications. The components of a user interface are not necessarily in the same physical location. For
example user interface components are found both client side (as in the case of HTML pages) and server side (as in the
case of components that generate HTML pages).

The following perspectives provide guidance for building user interfaces to promote interoperability of user interface
components and improve human-computer interactions.

Detailed Perspectives

* Human-Computer Interaction [P1032]
* Browser-Based Clients [P1008]
e Thick Clients [P1074]

Page 83

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Human-Computer Interaction

P1032: Human-Computer Interaction

Human-Computer Interaction (HCI) is the study, planning, and design of the interaction between humans and computers.
HCIl is a subset of Human Systems Integration (HSI). Human Systems Integration is a requirement for Department of
Defense (DoD) acquisition; see Enclosure 8 of DoD Instruction 5000.02 [R1165]. In particular, this instruction requires that
Program Managers shall take steps to include human factors engineering during system engineering over the lifecycle

of the program to provide effective human-machine interfaces, "Where practical and cost effective, system designs shall
minimize or eliminate system characteristics that require excessive cognitive, physical or sensory skills; entail extensive
training or workload-intensive tasks; result in mission-critical errors; or produce safety or health hazards."

Interoperability includes both the technical exchange of information and the end-to-end operational effectiveness of that
exchanged information as required for mission accomplishment. Whenever a user is required to interact with a computer
user interface to accomplish a mission, and that interaction fails due to poor design (i.e., information is misunderstood or
interaction results in a high cognitive load) then the risk of not accomplishing the mission is increased.

This perspective provides guidance and best practices that benefit human computer interaction to increase total system
performance, reduce maintenance costs through better design, and accommodate the cognitive characteristics of the
user. This perspective provides guidance for human factors common to all applications including data entry, data display,
and user control appearance and behavior. The following detailed perspectives provide additional human factor guidance
on more specific topics.

Detailed Perspectives

« Designing User Interfaces for Internationalization [P1112]
« Designing User Interfaces for Accessibility [P1111]
¢ Human Factor Considerations for Web-Based User Interfaces [P1108]

Guidance
e (G1032: Validate all input fields.
* (G1268: Label all data entry fields.
* G1270: Include scroll bars for text entry areas if the data buffer is greater than the viewable area.
* (1285: Use relative font sizes.
» (1286: Provide text labels for all buttons.
e (1287: Provide feedback when a transaction will require the user to wait.
» G1760: Solicit feedback from users on user interface usability problems.
» G1761: Provide units of measurements when displaying data.
* G1762: Indicate all simulated data as simulated.

» (G1763: Indicate the security classification for all classified data.

Best Practices

e BP1054: Use conventional user interface controls that provide input choices for the user.

» BP1272: Disable dependent child controls when the parent control is inactive.

* BP1273: Gray out the push button label if a button is unavailable.

« BP1280: In tabular data displays, right justify integer data.

» BP1281: In tabular data displays, justify numeric data with decimals by using the decimal point.

» BP1290: Use a tool tip to display help information about a control when the purpose of the control is not self-
evident.

e BP1291: Use obvious navigation controls for moving between pages in search results that span multiple pages.

« BP1298: Provide basic search functionality as the default with a link or button that provides more advanced search
features.

Page 84

Part 5: Developer Guidance
e BP1767: Follow a standards-based process for human systems integration engineering.

Page 85

Part 5: Developer Guidance

Part 5: Developer Guidance > User Interfaces > Human-Computer Interaction > Designing User Interfaces for
Internationalization

P1112: Designing User Interfaces for Internationalization

Internationalization is the process of generalizing software so that it is interoperable with multiple languages (i.e.,

locales) and cultural conventions without the need for re-design or re-compilation. If an application designed for a U.S.
audience will be used in combined or coalition warfare operations, it needs to provide a user interface that matches users'
expectations, interacts with users in their native language, and displays data in a manner that is consistent with users'
cultural conventions. The purpose of this perspective is to provide a starting reference for developers needing to support
internationalization and provides best practices and resources.

Best Practices

» BP1764: Make all localizable user interface elements such as text and graphics externally configurable.
» BP1765: Declare the encoding type for all user interface content.

» BP1766: Develop user interfaces to accommodate variable syntactic structure for messages.

Page 86

Part 5: Developer Guidance

Part 5: Developer Guidance > User Interfaces > Human-Computer Interaction > Designing User Interfaces for
Accessibility

P1111: Designing User Interfaces for Accessibility

Section 508 of the Rehabilitation Act of 1973, as amended, requires that individuals with disabilities have access to
and use of information that is comparable to that provided to federal employees and members of the public who are
not disabled. The standards created under Section 508 define technology accessibility requirements for all types of
information technology in the federal sector, including Web-based intranet and Internet information and applications.

Federal accessibility standards focus on providing redundancy in information presentation and interaction so individuals
with disabilities can use different modalities to access information. The scope of Section 508 is confined to the federal
sector, with a limited exemption for systems used for military command, weaponry, intelligence, and cryptologic activities.
The exemption does not apply to routine business and administrative systems used for other defense-related purposes
or by defense agencies or personnel. A Web application or portal that will be used in these systems is required to comply
with Section 508 standards.

Guidance

e (G1044: Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973 (as
amended) when developing software user interfaces.

Page 87

Part 5: Developer Guidance

Part 5: Developer Guidance > User Interfaces > Human-Computer Interaction > Human Factor Considerations for Web-
Based User Interfaces

P1108: Human Factor Considerations for Web-Based User
Interfaces

Web based user interfaces include Web sites, Web applications, and Web portals. This perspective provides guidance
and best practices relating to human factors consideration that are specific to Web-based user interfaces. Additional
information concerning general user interface guidance is available in the Human Computer Interaction [P1032]
perspective.

Web sites tend to be content-centric and are generally developed using HTML for marking up content for Web pages.
Sometimes other technologies such as JavaScript are used to add interactivity to Web pages. If developers choose to
use a mix of HTML and other technologies to deliver Web content, it is important that they design their Web pages so the
pages work correctly when viewed with browsers that support these technologies as well as with browsers that do not. In
this way, all users will have an acceptable experience using the Web site.

Web sites vary in their layout, but there are common themes for layouts that are widely used and understood users. Some
example Web site layouts are shown in this figure:

Selector Area
Selector Detail
Area Area
Detail Area
Overview Selector
Area Area
Overview]
Selector| Detail Area .
Detail
Area Area Area
1178

Web Applications

A Web site tends to be content-centric, but a Web application tends to be task-centric and organizes content
around a hierarchy of tasks. An example user interface for a given task structure is shown in this figure:

Task Structure Application Structure
Task A [Task B] [Task C|
Tasks |Subtask 1 | Subitask 2 |
Subtasks
[117%

A Web application often supports interactivity similar to that available in a desktop application but delivered to
users within the framework of a browser. Because a Web application allows users to create, save, and delete data,
it supports greater complexity in design and interactivity compared to a content-oriented site.

In addition to application structure, there are common navigation models that are well understood by users for Web
application workflow. Some common examples are in this figure:

Page 88

Part 5: Developer Guidance

Hub Wizard

Step 1 |=—+|Step 2 |=—+| ... [=—*StepN

Pyramid
ol o e+t
Parent

s ")
VAR

Child || child [7=—=| child

1150

The "hub navigation metaphor" is often used for applications where a task consists of multiple independent steps
that are performed in any order. The hub page present users with a collection of "spoke" pages that they access
from a single page; when users submit their input, they are returned to the hub page.

The "wizard navigation" metaphor is often used when a task consists of multiple interdependent steps that are
performed in a predefined order. In this metaphor, a wizard presents users with a collection of pages that they
interact with sequentially; when the user submits their input, the user is presented with the next page.

The "pyramid navigation" metaphor is often used when it is important to navigate to sibling, child, or parent pages
while completing tasks; when the user submit their input, they are returned to the same page where they follow
links to another adjacent page in the pyramid.

Web Portals

A portal is a type of Web application that provides a gateway from which users can access the information,
resources, and services they need. A portal aggregates and organizes content from different sources within a Web
page related to specific mission or business task. Sometimes a portal allows users to personalize what and how
information is presented to them such as selecting and arranging the content presented on the portal page and to
choosing the "look and feel" of the display.

The pages in a portal contain portlets that enable users to view and/or interact with Web-based information
related to a specific function. A portlet provides more than a view of existing Web content, functioning instead as a
complete application with multiple states and view modes.

Since portals are designed to contain portlets from various sources, it is important for portlet developers to develop
portlets carefully to allow for a standard presentation and behavior when the portlet is deployed within the portal.
Allowing for configuration for presentation such as fonts and colors allows for a common look and feel across all
portlets within a portal. Developing portlets according to standards for user controls enables a better experience for
the end user with respect to common portlet control behavior.

Guidance

G1267: Use HTML data entry fields on Web pages.

G1276: Do not modify the contents of the Web browser's status bar.
G1277: Do not use tickers on a Web site.

G1278: Use the browser default setting for links.

G1284: Use only one font for HTML body text.

G1292: Use text-based Web site navigation.

G1294: Provide a site map on all Web sites.

G1295: Provide redundant text links for images within an HTML page.

Page 89

Part 5: Developer Guidance
e (1566: Use al t attributes to provide alternate text for non-text items such as images.
e (G1759: Use a style guide when developing Web portlets.

Best Practices

* BP1038: Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New
Roman).

» BP1039: Do not underline any text unless it is a link.
» BP1041: Do not change the default colors of the links.

e BP1042: Do not build a Web page where the horizontal width is greater than the screen (vertical scrolling is fine),
planning for the lowest common denominator to be super-VGA resolution (800 x 600).

« BP1297: Structure a Web site hierarchy so users can reach important information and/or frequently accessed
functions in a maximum of three jumps.

» BP1299: Include a link back to the home page on all Web pages.
» BP1768: Use design patterns for application navigation.

Page 90

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Browser-Based Clients

P1008: Browser-Based Clients

This perspective provides guidance for creating and interfacing to thin clients. It includes links to the perspectives included
in the list in the following subsection.

Detailed Perspectives

e XML Rendering [P1084]

< Active Server Pages (Classic ASP) [P1001]

» Active Server Pages for .NET (ASP.NET) [P1002]
« JavaServer Pages (JSP) [P1040]

* Web Portals [P1077]

« Style Sheets [P1070]

Guidance
» (1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.
e G1271: Provide instructions and HTML examples for all style sheets.
» (G1283: Use linked style sheets rather than embedded styles.

Best Practices

» BP1040: Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g., yellow).

» BP1291: Use obvious navigation controls for moving between pages in search results that span multiple pages.
e BP1567: Use the <abbr > and <acr onyn® tags to specify the expansion of acronyms and abbreviations.

» BP1568: Use a markup language to represent mathematical equations within Web pages.

Page 91

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Browser-Based Clients > XML Rendering

P1084: XML Rendering

XML can render display-device-neutral output to a particular output device given a set of display rules or a style sheet.
The XSLT file is the decoupled output formatter that determines how the output device renders the data.

Guidance

* (G1045: Separate XML data presentation metadata from data values.

Page 92

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Browser-Based Clients > Active Server Pages (Classic ASP)

P1001: Active Server Pages (Classic ASP)

Microsoft Active Server Pages (ASP) is a server-side scripting environment for creating dynamically-generated Web
content (generally but not limited to HTML pages).

ASP supports combining static content (such as HTML, CSS, and images) with server-side-executed scripts and
Component Object Model (COM) objects to generate interactive content. ASP supports multiple scripting languages
including Visual Basic Scripting (VBScript) and JScript.

ASP is generally superseded by ASP.NET,; therefore; ASP is sometimes referred to as Classic ASP.

Guidance

» (G1050: In Active Server Pages (Classic ASP), isolate the presentation tier from the middle tier using Component
Object Model (COM) objects.

* (1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

Page 93

Part 5: Developer Guidance

Part 5: Developer Guidance > User Interfaces > Browser-Based Clients > Active Server Pages for .NET (ASP.NET)

P1002: Active Server Pages for .NET (ASP.NET)

Microsoft Active Server pages for .NET (ASP.NET) is a server-side environment for creating dynamically-generated Web
content (to include but not limited to HTML, XML, and Web services). ASP.NET supports multiple programing languages
through its foundation on the .NET Framework and its Common Language Runtime (CLR).

ASP.NET supersedes the older Active Server Pages, now often called Classic ASP. ASP.NET offers the following
advantages over Classic ASP:

ASP.NET supports the separation of presentation layer with the business logic through its support of a code-behind
feature

Precompiled code allows for ASP.NET to have performance benefits over Classic ASP

Precompiled code allows for ASP.NET developers to trap coding errors sooner in the lifecycle (as opposed to runtime
with Classic ASP)

ASP.NET supports improved exception handling
ASP.NET supports object-oriented design programming

Guidance

G1052: Use the code-behind feature in ASP.NET to separate presentation code from the business logic.
G1053: Do not embed HTML code in any code-behind code used by aspx pages.

G1056: Specify a versioning policy for .NET assemblies.

G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

Page 94

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Browser-Based Clients > JavaServer Pages (JSP)

P1040: JavaServer Pages (JSP)

JavaServer Pages (JSP) technology is a Java technology that supports software and Web developers in creating
dynamic server-generated content (including but not limited to Web content). JSP syntax supports mixing delimited blocks
of Java code within static content (such as HTML and CSS) in a Web page. The resulting page is compiled and executed
server-side allowing for dynamic Web content.

This mixture of Java code within static content often leads to increased development and maintenance costs as one
person is often responsible for the layout, static content, and design elements in a JSP page while another person is often
responsible for the Java code within the same JSP page. The JavaServer Pages Standard Tag Library (JSTL) helps
address separation of concerns by allowing for the separation of business logic into tag libraries, which are referenced
within the static Web content. Using JSTL helps support the use of the model-view-controller pattern which allows for
the responsible parties to maintain better their respective portions of a JSP page.

Guidance
e (G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

* (G1060: Encapsulate Java code in JavaServer Pages Standard Tag Libraries (JSTL) when using the code in
JavaServer Pages (JSP).

Page 95

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Browser-Based Clients > Web Portals

P1077: Web Portals

A Web portal is a Web site that provides a starting point or gateway to other resources on the Internet or an intranet.
Access to a Web portal is typically via HTTP and can be in any number of formats including HTML, Wireless Markup
Language (WML) or VoiceXML. A Web Portal often uses a Web Application that provides single sign-on, content
integration and aggregation from different sources, collaboration, content and document management and
personalization of the presentation. It hosts the presentation layer of different backend systems in a single touch point.

An attractive feature of a portal to an enterprise is to aggregate different applications into a single page with a common
Look and Feel that enhances the portal end user's experience. A portal may also have sophisticated personalization
features, which provide customized content to individual end users or to their roles within the enterprise. Portal pages
can dynamically coordinate different portlets to create specialized content for different portal end users.

IBM's Websphere depicts the basic architecture of portals as a series of layers between the end user's environment such
as browsers, mobile devices and phones. The portal processes an end user client request. A Web Application that
interacts with the portlet to request the web page for the current end user is produced. The portal Web Application then
uses the portlet container for each portlet to retrieve the requested content through the Web Container Invoker API.
The portlet container calls the portlets through the Portlet API. The Container Provider Service Provider Interface (SPI)
enables the Web Application to retrieve information from the portal through its portlet container.

The portlet container invokes the portlets, provides a runtime environment, and manages the lifecycle of the portlet. In
addition, it provides persistence for the portlet to store end user information enabling the production of customized Web
pages.

=
[=]
=
[+1]
]
@
=1
3
F 3
= 3 g
= Portlet / a
= =
F|[fonalieb) — | serviet || Z
= pplication | [1 | container =
o o
o =
= 2
J
(=1
@
=
o
11005
Guidance

* (G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote Portlets
(WSRP) Specification protocol.

Best Practices
e BP1246: Base Java-based portlets on JSR 168.

» BP1247: Encapsulate Java-based portlets in a Web Application Archive (.war) file.

Page 96

http://www-106.ibm.com/developerworks/websphere/library/techarticles/0312_hepper/hepper.html

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Browser-Based Clients > Style Sheets

P1070: Style Sheets

A style sheet is a template used to customize the layout of a Web site. Style sheets allow Web sites to present content in
a consistent manner. Web designers can create custom tags to override default values:

h1, h2, h3 {

font-famly: verdana, arial, 'sans serif';
}
p,table, i {

font-famly: verdana, arial, 'sans serif';

margin-left: 10pt;
}

Guidance
» (1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.
e G1271: Provide instructions and HTML examples for all style sheets.
e (G1283: Use linked style sheets rather than embedded styles.

Best Practices

» BP1038: Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New
Roman).

» BP1040: Use hex codes for all colors (e.g., #FFFF33), never the color name (e.qg., yellow).

» BP1041: Do not change the default colors of the links.

Page 97

Part 5: Developer Guidance
Part 5: Developer Guidance > User Interfaces > Thick Clients

P1074: Thick Clients

A thick client (often called "fat client") is a client machine in a client/server environment that performs most or all of the
application processing with little or none performed in the server. Developers should use existing user interface (Ul)
toolkits rather than build their own; the Sun Developer Network Java SE Desktop Overview[R1078] provides information on

two such toolkits for Java (Swing and AWT).

Guidance

* (1030: Use a user interface component library.

Page 98

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware

P1052: Middleware

Middleware is software that resides between software components and the underlying platforms (i.e., operating system,

services, databases, hardware, etc.) with which the software interacts. Middleware enables communication between
different, often distributed, software components while isolating integration complexity into well-understood software

abstractions. Middleware is sometimes referred to as "plumbing" as it connects two or more components allowing for the

flow of data between them.

Note: The distinction between operating system and middleware functionality is sometimes arbitrary. Some
functionality previously provided by middleware is now integrated within operating systems. For example, modern
operating systems commonly include the TCP/IP stack as well as support for playback of audiovisual content.

Middleware often supports and simplifies the development of complex, distributed software systems in a Service-
Oriented Architecture (SOA). Middleware often is in many places within a software architecture (for example client-side
as well as sever-side software components) and includes software abstractions from a variety of categories:

Messaging middleware (sometime called Message-Oriented Middleware) supports publishing, consuming, routing,
and processing of messages

Service-related middleware supports the production, hosting, management, and interaction with services implemented
using a variety of technologies

Enterprise Service Bus (ESB) middleware provides invocation, messaging, mediation, transport, management, and
security in a SOA environment

Embedded middleware provides services, communication, and hardware abstraction on embedded platforms such as
software radios

Remote Procedure Call (RPC) middleware provides access to procedures running on remote systems

Object Request Broker (ORB) middleware enables software applications to send objects and request services in an
object-oriented fashon

Data access middleware such as Enterprise JavaBeans (EJBs) provides abstraction between software and
underlying data storage solutions

Application server middleware that facilitate developing and deploying distributed enterprise applications

Programming environments such as .NET and Java EE often act as middleware, providing abstractions and Application
Programming Interfaces (APIs) between software and underlying platforms.

Detailed Perspectives

* Messaging [P1047]

* Web Services [P1078]

« Enterprise Service Bus (ESB) [P1389]

» Software Communication Architecture [P1087]
+ CORBA [P1011]

e .NET Framework [P1086]

» Java EE Deployment Descriptors [P1037]

Page 99

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Messaging

P1047: Messaging

The explosion of the Internet required applications to communicate and interoperate with other applications and services.
Messaging systems play an important role in enterprise applications because computers and networks are inherently
unreliable and messaging systems are perfectly suited to operate in disconnected environments. They provide a reliable,
secure, event-driven message-delivery communication mechanism. Unlike traditional RPC-based systems (RMI or
CORBA), most message-oriented based systems operate peer-to-peer.

The messaging paradigm offers three major advantages:

» Allows applications to communicate asynchronously. This means the system sending the message does not have to
wait around for a response.

» Provides more robustness and reliability; messages do not get lost if a client has crashed or is unavailable.

* Multiplexes messages and sends them to multiple clients.

There are other advantages such as transactional message support, message prioritization, load balancing, and firewall

tunneling. However, these features usually depend on how the Message-Oriented Middleware (MOM) is implemented.

This diagram shows the relationship of the classes and interfaces in the Java Message Service (JMS) API. Developers
use these classes and interfaces to create a JMS application.

;Tx£?2?)
Conneciion

[106E

Detailed Perspectives

¢ Message-Oriented Middleware (MOM) [P1046]
« Data Distribution Service (DDS) [P1190]
e Messaging with MSMQ [P1048]

Page 100

Part 5: Developer Guidance

Part 5: Developer Guidance > Middleware > Messaging > Message-Oriented Middleware (MOM)

P1046: Message-Oriented Middleware (MOM)

Message-oriented middleware acts as an arbitrator between incoming and outgoing messages to insulate producers
and consumers from other producers and consumers A MOM typically is implemented using proprietary protocols and
interfaces, which means that different implementations are usually incompatible. Using a single implementation of a MOM
in a system typically leads to dependence on the MOM vendor for maintenance, support, and future enhancements.
Maturing standards such as Java Message Service (JMS) and SOAP Web services are reducing vendor dependencies
by standardizing message content and providing standard interfaces to the various MOM APIs.

Advantages

A MOM provides a common reliable way for programs to create, send, receive, and read messages in any
distributed enterprise system.

A MOM ensures fast, reliable, asynchronous communications, guaranteed message delivery, receipt
notification, and transaction control.

A MOM increases the interoperability, portability, and flexibility of an application by allowing it to be distributed
over multiple heterogeneous platforms.

A MOM enables applications to exchange messages with remote programs without having to know on what
platform or processor the other application resides.

Disadvantages

A MOM does not help with interoperability directly, as applications need to agree on message content and
format at development time.

The current marketplace is filled with proprietary implementations of features, so moving between MOMs
usually requires recoding; JMS and other standard interfaces help in this area but do not usually cover all of the
vendor's extended functionality.

Features

Guaranteed message delivery MOMs provide a message queue between interoperating processes.

If the destination process is busy or offline, the message is held in a
temporary storage location until it can be processed.

Asynchronous and synchronous | MOMs allow multitasking. Once an application sends out a message to
communications a receiving application, the MOM allows the client application to handle

other tasks without waiting for a response from the receiving application.
Supports blocking method calls.

Transaction support Most MOMs support transactions.

One-time, in-order delivery MOMs guarantee that each message will be delivered once and that
messages are received in the order in which they are sent.

Message routing services MOMs support least-cost routing and can reroute around network
problems.
Notification Services MOMs provide audit trails, journaling, and notifications when messages

are received.

Message Models

The most important aspect of a message-based communication system is the message. The most common
messaging models are the following:

Page 101

Part 5: Developer Guidance
e Point-to-Point (p2p)
e Publish/Subscribe (pub/sub)
* Request-Reply

Page 102

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS)

P1190: Data Distribution Service (DDS)

Data Distribution Service for Real-time Systems (DDS) is an Object Management Group (OMG) specification for
distributing data messages using the Publish-Subscribe design pattern. It defines a common application programming
interface (API) that cleanly separates the data distribution functionality from the application functionality. DDS also
simplifies the complexity associated with application programming by separating the details of publishing data messages
from those for subscribing to data messages using a Quality of Service (QoS) approach. The implementation of the
interface effectively creates a data distribution service that applications can access.

The use of QoS makes DDS especially appealing as an integration middleware in heterogeneous systems. DDS QoS
allows fine-grained tuning of the properties for each information flow including the lowest level data writer and data reader.
Therefore, the system can devote its resources to the more critical flows ensuring they are achievable. Also, the use of
QoS combined with the inherent real-time nature of the DDS allows DDS solutions to span the complete spectrum from
Enterprise (non-real-time) to hard real-time applications as shown in the following figure.

ava ATSJ [soft AT} n

< Java S JMS -
CORBA RT CORBA

-< Data Distribution Service (DDS) >-

Men-real-time Soft real-time Hard real-time Extreme r'eal-timer
Mot Adapied from NEWC.DD Od Documentation

Messaging Technelogies and Standards

1195

DDS Profiles

The specification divides the complexity of the full data distribution functionality into five profiles (Minimum,
Ownership, Content Subscription, Persistence, and Object Model) to help applications meet their individual
requirements. The applications can use any or all of the profiles to access the Data Distribution Service.

Page 103

Part 5: Developer Guidance

Platfarm independent data-madel (I0L)

Dratar-C

1198

DDS Compliance Profiles

CoS-driven Data-Centric Model and Real-Time

PubSub Message Service
Agynchronous one-to-many real-time data communication

Crynamic data-ficws based on current-inberest (pubisut)

Sirong-type interfaces for mulliple languages
Information Cramership management Tor replication

* Faull olerant and global persistence of selected dHa
= Fusrantesd data avaabilty supports spplication faut-tolerance
= Confent-aaare filering and dynamic queries

= Reducing spolication-comglexity

= |mproving SEtem-peronmance

emtiic Information Management

Local Object-Cache Interface to the il onmation

= Local object-model based on the DLEL meta-mode|

= The meta-model can manage object relationships ard
supports nathe language constructs

Minimum This profile contains just the mandatory features of the DCPS layer. None of the
optional features are included.
Ownership This profile adds the following:

< the optional setting EXCLUSI VE of the OANERSHI P kind
e support for the optional OMNNERSHI P_STRENGTH policy
< the ability to set a depth > 1 for the H STORY QoS policy.

Content-Subscription

This profile adds the optional classes Cont ent Fi | t er edTopi ¢,
QueryCondi ti on, and Mul ti Topi c. This profile also enables subscriptions by
content.

Persistence This profile adds the optional QoS Policy DURABI LI TY_SERVI CE as well as the
optional settings TRANSI ENT and PERSI STENT of the DURABI LI TY QoS Policy
kind. This profile enables saving data into either transient memory, or permanent
storage so that it can survive the lifecycle of the Dat aW i t er and system outings.

Object Model This profile includes the DLRL and also includes support for the
PRESENTATI ONaccess_scope setting of GROUP.

Example

The following diagram depicts using a data-oriented approach to solve a typical distributed system problem.
The goal in this example is to maintain the temperature in many buildings, using embedded controllers each
connected to a number of sensors. Each of these sensors and control processes are connected through a
transport mechanism such as Ethernet and use basic protocols such as TCP-UDP/IP to provide standardized

communication.

Page 104

Part 5: Developer Guidance
Building 3
Building 2

Building 1

Controllers .
1..n

TemperSture

Sensors
1..n

..

11197

To achieve data integrity and fail-over capabilities, multiple controllers and sensors are deployed in each building.
Controllers within a building collaborate in the process of collecting data from the various sensors. Applications
access and manipulate the data through the use of a global data space.

Data-centric technologies such as databases and Service-Oriented Architecture Web service-based applications
can interoperate seamlessly with the embedded sensors. These technologies provide a standards-based way for
external applications to get, process and manipulate real-time sensor data with out having to know the specifics
of the real-time data infrastructure. Furthermore, decoupling the data from the technology that manipulates the
data contributes to developing a truly data-centric application. In this example, the external access and monitoring
applications can simply receive real-time updates from any sensor as well as issue commands to the various
controllers via DDS, SQL, etc., to maintain suitable temperatures.

Data Model

For simplicity, this example will focus on the data the sensors send to their controller and how they can be
distributed throughout the entire system. The first step in a data-centric approach is to describe the data format
carefully in a standards-based way, either IDL or XML, and give it a Topic name. Topics are the element of the
DDS middleware publish-subscribe standard which identify the data objects and provide the basic connection
between publishers and subscribers. Subscribers (the Controllers in this example) register Topics with the
middleware that they wish to receive. Publishers (the individual sensors in this example) register Topics with the
middleware that they will send. If the Topics do not match, effective communication does not take place.

Topics enable one to find specific information sources when architecting a loosely coupled system; that is, one
which does not know a priori how many sensors or controllers there are going to be or where they all are. The
Controller can simply subscribe to TenpSensor , the Topic's name, and receive all the sensor updates for that
building. Similarly, a sensor does not need to know if it is sending its data to one or multiple Controllers or even an
external data store.

Specification of the Topic's name is a key element in a data-centric approach to creating open real-

time systems. One could name each sensor's Topic based on its unique location in the building,

FI oor 12RoonBSensor 14 for example, but the Controller would then need to be configured every time a sensor
is added or removed from the system. Topics (name and type) define the standard interface for the distributed
system; chose them appropriately.

Page 105

Part 5: Developer Guidance
Data Type

Specification of the Topic's data type is equally important as the Topic's name. DDS specifies the use of a subset
of the Interface Definition Language (IDL) for specifying a Topic's data type.

Note: IDL readily maps to XML and SQL semantics.

struct BensorData

{
long id; //@key
tloat temp;

bi

1198

In the definition of the Topic's type, chose one or more data elements to be a Key. Keys provide scalability and
the communication infrastructure can use the key to sort and order data from many sensors. In this example,
without keys, one would need to create individual Topics for each sensor. Topic names for these topics might be
Sensor _1, Sensor _2, and so on. Therefore, even though each Topic is comprised of the same data type, there
would still be multiple Topics. With keys, there is only one topic, TenpSensor, used to report temperatures.

New sensors can be added without creating a new Topic. The publishing application would just need to set a new
id when it was ready to publish. An application can also have a situation where there are multiple publishers of the
same Topic with the same key defined. This enables the application to provide redundancy. Per this example, two
sensors in the same room using the same Key value will measure the same piece of information. Managing the

redundancy, should one or both sensors report to the controller, is accomplished though Quality-of-Service (QoS).

Domains and Partitions

A Domain is the basic DDS construct used to bind individual publications and subscriptions together for
communication. A distributed application can elect to use single or multiple DDS Domains for its data-centric
communications. A Partition is a way to separate Topics logically within a DDS Domain.

In the context of the example, Partitions can group sensors on different floors. For example, to divide the building
into different zones where each zone is controlled by a dedicated Controller, the Sensor and Controller could set
the Partition to Fl oor 1 and Fl oor 1- 6, respectively. The Controller will receive data from all Sensors on Floors
1 through 6. Using Partitions makes it easy to group which Sensors are hooked to a Controller and a Controller
can take over a different zone by changing or adding to its Partition list.

In the example, different buildings map to different DDS Domains. Domains isolate communication, promote
scalability and segregate different classifications of data.
Quality of Service

The following briefly details how one might leverage a few of the DDS QoS Policies for this example.
Ownership

The Ownership QoS specifies whether or not multiple publishers can update the same data object and is how to
achieve fault-tolerance using DDS.

Returning to the example, having multiple sensors in the same room and only wanting to get data from the primary
(as long as it is functioning), then the Ownership QoS policy is set to Exclusive, stating that only one sensor can
update that keyed value. Setting the Ownership QoS value to Shared indicates that there can be multiple sensors
in the same room all reporting the same piece of keyed data. In this case the Controller would get all updates from
all sensors and treat the values as the same measurement.

Durability

The Durability QoS specifies whether past samples of data will be available to newly joining subscribers.
Page 106

Part 5: Developer Guidance

Considering the example, if a Controller were to reboot, rather than require all sensors to resend their data, or
require the data to be sent at a periodic rate in case the systems reboots, one simply gets the latest published
value for every attached sensor. This effectively decouples the system in time and provides a high degree of data
integrity.

History
History specifies how many data samples are stored for later delivery.

In the case of the example, a rebooted controller may want the last 5 samples from its sensors, so that it can make
sure that readings are consistent.

Reliability

The Reliability QoS may be set on a per Topic basis and informs the middleware that the Subscription should
receive all data (no missed samples) from a Publication even over non-reliable transports. Generally for periodic
publications Reliability doesn't need to be set, since it can just get the updated value one sample period later.
Although periodic sensor data doesn't need to be delivered reliably, synchronization commands between
Controllers in this example could be.

Summary

This simply stated example is surprisingly complex, containing many elements of real-time messaging, data
integrity and failover capabilities, integration with databases, web services, as well as scalability and modularity
concerns while remaining data-centric.

Detailed Perspectives

e Decoupling Using DDS and Publish-Subscribe [P1191]
+ DDS Quiality of Service [P1192]

« DDS Data-Centric Publish-Subscribe (DCPS) [P1193]
« DDS Data Local Reconstruction Layer (DLRL) [P1197]

Page 107

Part 5: Developer Guidance

Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS) > Decoupling Using DDS and
Publish-Subscribe

P1191: Decoupling Using DDS and Publish-Subscribe

A fundamental tenet of data-centricity and DDS is the decoupling between information providers and consumers. The
decoupling is conceptually anonymous in that the producers do not need to know who the consumers are, and similarly
the consumers do not need to know who the producers are. They are in fact each communicating independently using
the DDS Domain (i.e., Global Data Space). Persistence services in the Global Data Space allow data written by an
application to be available to late joining applications, even if the original application is no longer present.

While communications can precede anonymously, DDS does offer the means for an application to detect its
communication partner. A Writer can see who the matched Readers are, and similarly a Reader can identify the matched
Writers. If so requested, the application is given notification of new matches and can even "veto" specific Readers or
Writers.

Decoupling and anonymity is accomplished using the publish-subscribe paradigm. Applications that want to provide
information indicate their intent to publish by creating a DataWriter and specifying the offered Quality of Service (QoS)
and a Listener. Applications that want to access information indicate their intent to subscribe by creating a DataReader
and specifying the requested QoS and a Listener.

Publishers are matched with subscribers by DDS using the Topic and the QoS, and DDS automatically sets up the
needed communication paths and resources such that information (data updates) can flow directly with the highest
possible performance. Listeners are used to indicate to the application that certain events of interest have taken place,
such as the arrival of new information for Dat aReader s, violations in the QoS contracts, matching of new Publishers/
Subscribers or other middleware-observed events.

QoS contracts provide the means for applications/components to remain modular and independent from each other
while at the same time having some control over how the information is provided or delivered. For example, a reading
application may have some minimum requirements regarding reliability, ordering, coherence, or frequencies of updates,
and a writing application may have some resource limits with regards to how much history it can maintain or how many
readers it can handle. The QoS contract can specify these requirements and DDS checks and monitors them. In addition
QoS can configure resources, message priorities, history, etc. The ability to fine-tune separately the behavior of each
Dat aW it er and Dat aReader is one of the reasons why DDS can span the range from real-time to near-time to
enterprise systems.

Guidance
e (G1802: Catch Data Distribution Service (DDS) events.
* (G1807: Check the return values of Data Distribution Service (DDS) functions.
* (G1809: Handle all Data Distribution Service (DDS) events using one of the subscriber access APIs.

» (1810: Use data models to document the data contained within the Data Distribution Service (DDS) Data-
Centric Publish Subscribe (DCPS).

Best Practices
« BP1811: Isolate all use of vendor specific extensions to the Data Distribution Service (DDS).

 BP1825: Use thei gnore_parti ci pant operation on the DomainParticipant to deny access to another
DomainParticipant trying to join a Data Distribution Service (DDS) Domain.

 BP1827:Use thei gnore_publicationandi gnore_subscri pti on onthe DomainParticipant to deny
access to a Data Distribution Service (DDS) Topic by a specific DataWriter or DataReader.

* BP1830: Use the Data Distribution Service (DDS) Content Profile to tailor subscription message data.
» BP1831: Use the Data Distribution Service (DDS) Persistence Profile to ensure durable data delivery.

Page 108

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS) > DDS Quiality of Service

P1192: DDS Quality of Service

Quality of Service (QoS) is a general concept that specifies the behavior of a service. Programming service behavior
by means of QoS settings offers the advantage that the application developer only indicates what is wanted rather than
how to achieve the specific QoS. Generally speaking, QoS is comprised of several QoS policies. Each QoS policy is then
an independent description that associates a hame with a value. Describing QoS by means of a list of independent QoS
policies gives rise to more flexibility.

Note: As Service-Oriented Architecture (SOA) systems evolve and become richer in the number of publishers
and subscribers supported with time, the use of well defined and specific QoS parameters becomes essential in
managing the complexity of the system and the loosely coupled nature of the services.

Data-centric communication using DDS provides the ability to specify various parameters like the rate of publication,
rate of subscription, how long the data is valid, and many others. These QoS parameters allow system designers to
construct a distributed application based on the requirements for, and availability of, each specific piece of data. A data-
centric environment allows a communication mechanism that is custom tailored to the distributed application's specific
requirements yet remains a loosely coupled design and architecture.

The ability to set QoS on a per-entity basis is a significant capability provided by DDS. Being able to specify different
QoS parameters for each Topic, Publisher or Subscriber gives developers many options when designing their systems.
Through the combination of these parameters, a system architect can construct a distributed application to address an
entire range of requirements, from simple communication patterns to complex data interactions.

Guidance
* G1771: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of a publisher.

e (1801: Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within
a DDS Domain.

» (G1803: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe real-
time messaging criteria for Publishers.

» (1804: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe
DataWriter.

» (G1805: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of the Subscriber.

» (1806: Explicitly define the Request-Offered Data Distribution Service (DDS) Quality of Service (QoS) Policies
to describe the behavior of the DataReader.

» (1808: Handle all Data Distribution Service (DDS) Quality of Service (QoS) contract violations using one of the
Subscriber access APIs.

Best Practices

e BP1812: Use the RELI ABI LI TY Quality of Service (QoS) kind BEST_EFFORT for Data Distribution Service
(DDS) Topics that are written frequently where missing an update is not important because new updates occur
soon thereafter.

» BP1813: Use the RELI ABI LI TY Quality of Service (QoS) kind RELI ABLE for Data Distribution Service (DDS)
Topics written sporadically or where it is important that the current data in the Topic is received reliably.

* BP1814: Use the DEADLI NE Quality of Service (QoS) to for Data Distribution Service (DDS) DataWriters for
which data is published at a constant rate.

» BP1815: Use the DEADLI NE Quality of Service (QoS) for Data Distribution Service (DDS) DataReaders that
expect data to be sent to them at a constant rate.

» BP1816: Use the LI VELI NESS Quality of Service (QoS) for Data Distribution Service (DDS) Topics where data
is not sent sporadically; that is, it is sent with no fixed period.

Page 109

Part 5: Developer Guidance

BP1817: Use the MANUAL_BY_TOPI C setting of the LI VELI NESS Quality of Service (QoS) for Data Distribution
Service (DDS) Topics where the presence and health of the DataWriter is critical to the proper operation of the
system.

BP1818: Use the HI STORY Quality of Service (QoS) kind KEEP_LAST for Data Distribution Service (DDS)
Topics that represent system state, in that new data-values replace the old values for each Keyed data-object.

BP1819: Use the HI STORY Quality of Service (QoS) kind KEEP_ALL for Data Distribution Service (DDS) Topics
that represent events or commands where all values written should be delivered to the readers (i.e., new values do
not replace old values).

BP1820: Use TI ME_BASED_FI LTER Quality of Service (QoS) to protect DataReaders that cannot handle all the
traffic that could be written by the writers on that Data Distribution Service (DDS)Topic and just need periodic
updates on the most current data-values.

BP1821: Use the Data Distribution Service (DDS) LI FESPAN Quality of Service (QoS) to indicate that data is
only valid for a finite time period and stale data is discarded after a certain expiration time elapses.

BP1822: Use the PARTI TI ON Quality of Service (QoS) to limit the scope of the data written/read on a Data
Distribution Service (DDS) Topic to only the writer/readers that have a common partition.

BP1823: Use the Data Distribution Service (DDS) RESOURCES LI M TS Quality of Service (QoS) in platforms
with limited memory or in real-time systems to properly configure the resources that will be utilized and avoid
exhaustion of system resources at run-time.

BP1824: Use the USER_DATA Quality of Service (QoS) to communicate metadata on the DomainParticipant that
may be used to authenticate the application trying to join the Data Distribution Service (DDS) Domain.

BP1826: Use the USER_DATA Quality of Service (QoS) on the DataWriters and DataReaders to communicate
metadata that may provide application-specific information of the entity writing/reading data in a Data Distribution
Service (DDS) Domain.

BP1828: Use the Data Distribution Service (DDS) OANERSHI P Quality of Service (QoS) kind set to SHARED
when each unique data-object within a DDS Topic to which multiple DataWriters can write.

BP1829: Use the Data Distribution Service (DDS) OANERSHI P Quality of Service (QoS) kind set to EXCLUSI VE
when multiple DataWriters cannot write each unique data-object within a DDS Topic simultaneously.

Page 110

Part 5: Developer Guidance

Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS) > DDS Data-Centric Publish-

Subscribe (DCPS)

P1193: DDS Data-Centric Publish-Subscribe (DCPS)

The Data-Centric Publish-Subscribe (DCPS) interface is targeted toward the efficient delivery of the proper information
to the proper recipients. It provides the application with a data-centric information model and is responsible for controlling

the lower level layer of the DDS infrastructure targeted toward the efficient and reliable delivery of the information to
its intended recipients. The DCPS architecture is comprised of five modules. The modules build upon each other in a
hierarchical inheritance structure. The following table captures the purpose of each of the five modules.

Infrastructure Model

Defines the abstract classes and the interfaces that are refined by the other modules;
also provides support for the two interaction styles (notification- and wait- based) within
the middleware

Domain Module

Contains the DomainParticipant class that acts as an entry point of the Service and
acts as a factory for many of the classes; the Dormai nParti ci pant also acts as a
container for the other objects that make up the Service

Topic-Definition Module

Contains the Topic, Content Fi | t eredTopi ¢, and Mul ti Topi c classes, the
Topi cLi st ener interface, and more generally, all that is needed by the application to
define Topic objects and attach QoS policies to them

Publication Module

Contains the Publisher and DataWriter classes as well as the Publ i sher Li st ener
and Dat aW i t er Li st ener interfaces, and more generally, all that is needed on the
publication side

Subscription Module

Contains the Subscriber, DataReader, ReadCondi t i on,and Quer yCondi ti on
classes, as well as the Subscri ber Li st ener and Dat aReader Li st ener interfaces,
and more generally, all that is needed on the subscription side

The following is a UML Class diagram that represents the five modules and how they relate to each other.

1

Domain Module

Publication Module

Subscription Module

\/

Topic Module

1199

Infrastructure
Module

Detailed Perspectives

« DDS Domains - Global Data Spaces [P1194]
« Reading/Writing Objects within a DDS Domain [P1195]

Page 111

Part 5: Developer Guidance
e Messaging within a DDS Domain [P1196]

Page 112

Part 5: Developer Guidance

Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS) > DDS Data-Centric Publish-
Subscribe (DCPS) > DDS Domains - Global Data Spaces

P1194:. DDS Domains - Global Data Spaces

DDS allows application developers to create a collection of virtual shared Global Data Spaces where separate
application processes can share data anonymously. Processes can access (read and/or write) data in the Global Data
Space as well as exchange messages on the associated DDS Domain.

A DDS Global Data Space (called a DDS Domain) is identified by a domai nl d that represents an isolated Data Space.
The Data Space exchanges no information or messages with other domains. The operating system maintains isolation
between DDS Domains by using different port numbers. Each computer process (running on behalf of some user or
application) must attach to the desired DDS Domain by creating a DDS DomainParticipant. Each Domai nParti ci pant
is owned by the creating process and is only accessible to it.

DDS Domain 1
& User Application
I g l_ Participant Participant
% Do 2|0
1 DDS

Glokal Data Space

—
Application
...,I Faricipant
o
L 20
1200

Note: The centralized image of a Global Data Space is just a convenient metaphor. In reality the DDS specification
mandates that there should be no centralized implementation of the global data and data updates must flow
directly from the writer to the readers.

A distributed system may employ multiple DDS Domains (i.e., Global Data Spaces), each identified by a
different domai nl d. A single application process may access multiple Global Data Spaces by creating multiple
Domai nPar ti ci pant s, each associated with one of the Global Data Spaces.

Page 113

Part 5: Developer Guidance

& User | i “Application

41 Do

Application .. |

1201

Guidance
e G1770: Explicitly define Data Distribution Service (DDS) Domains.
e G1772: Assign a unique identifier for each Data-Distribution Service (DDS) Domain.

Page 114

Part 5: Developer Guidance

Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS) > DDS Data-Centric Publish-
Subscribe (DCPS) > Reading/Writing Objects within a DDS Domain

P1195: Reading/Writing Objects within a DDS Domain

Address the Data Objects in the Global Data Space by means of a Topic (an application-chosen string that encodes

a homogeneous collection of objects) and a Key (a set of fields inside the data object that uniquely identifies the object
within the collection). A DDS Topic is an application-chosen string (such as Tenper at ur e) that has an associated
schema or format representing the type of the data objects (for example the sensor ID, the value, the units, the location
of the sensor, the time-stamp, etc.). The DDS Key is specific to each DDS Topic and uniquely identifies each Data Object
within the Topic.

Pictorially one could think of each Topic in the Global Data Space representing a table of related data objects where each
row represents the value of an individual data object the columns define the schema (data type of the object), and the
key is the column(s) that defines the identity of each object. The table below depicts this concept for the hypothetical
Tenper at ur e Topic.

Sensorld (Key) Value : float Units : string Location : string Timestamp

4535 23 Celsius Building 234, Room Tue Oct 31 15:47:42
13 PST 2006

5677 12 Celsius Building 121, Furnace Tue Oct 31 15:44:42
23 PST 2006

Another example is an Airport Information application that defines the Topic Depar ti ngFl i ght s with a schema
consisting of fields containing the following information: Airline, flight number, destination airport, departure terminal, gate,
scheduled departure time, expected departure time, and status. In this case the combination of fields Airline and Flight
Number provides the Key that uniquely identifies each flight. Updates to the global data space will provide new estimated
departure times, departing dates, etc. A display application may read this topic to show all the flights departing in the next
three hours.

Airline Flight Destination | Departure | Departure | Scheduled Expected Status
(Key) Number Terminal Gate Departure Departure

(Key)
SWA 023 PDX A 12 10:30 14:05 Departed
UA 119 LAX A 06 14:27 14:40 Boarding
AS 543 ANC A 03 14:10 14:20 Boarding
KLM 006 AMS A 14 14:35 14:35 Boarding
SQ 012 SIN B 03 15:00 15:20 Go to Gate
JL 001 NRT B 33 15:45 15:45 Go to Gate
LOT 007 WAW B 02 16:30 16:30 Wait

Page 115

Part 5: Developer Guidance

DDS
Global Data Space

Units
23 Celsus | 234
Celsus

%M Destination

LAX

1202

Guidance

G1141: Base data models on existing data models developed by Communities of Interest (COI).
G1146: Include information in the data model necessary to generate a data dictionary.

G1147: Use domain analysis to define the constraints on input data validation.

G1148: Normalize data models.

(G1810: Use data models to document the data contained within the Data Distribution Service (DDS) Data-
Centric Publish Subscribe (DCPS).

Best Practices

BP1145: Use vendor-neutral conceptual/logical models.

BP1254: For command-and-control systems, use the names defined in the Joint Command, Control and
Consultation Information Exchange Data Model (JC3IEDM) for data exposed to the outside communities.

BP1397: Identify and develop use cases or reuse existing use cases as appropriate as early in the data engineering
process as possible to support data model development.

Page 116

Part 5: Developer Guidance

Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS) > DDS Data-Centric Publish-
Subscribe (DCPS) > Messaging within a DDS Domain

P1196: Messaging within a DDS Domain

A DDS Topic acts like a virtual message-queue or pipe when DDS is used for messaging. Writers send messages though
the Topic and readers access messages using the same Topic.

Topics for DDS messages are bound to an application-defined schema in advance; for example, an Alarm message
where the schema consists of source identifier, the kind of alarm, the location, a time-stamp, and the urgency level.
DomainParticipants can publish and subscribe messages by specifying the Topic and the associated contents.

The Topics used for messaging also live within a DDS Domain (i.e., Global Data Space) identified by a unique
Donai nl d. Similar to the data-object paradigm, the middleware keeps the messaging Topics separated within different
DDS Domains by using different port numbers.

DDs
Global Data Space

*’
Participant

210

Participant

210

(it

L

11203

Note: The centralized image of a pipe is only a convenient concept. In reality, the DDS specification mandates that

there should be no centralized implementation of a pipe in DDS. Messages must flow directly from the sender to
the receivers.

The distinction between reading/writing data and receiving/sending messages is essentially a property of the Topic. Some
Topics represent data (if the identify certain fields as Keys) and others represent messages (if they do not contain specify
Keys). In addition, use different Quality of Service settings to attain the proper semantics. For example, associate Topics

representing data with a H STORY QoS setting of KEEP_LAST whereas Messages typically use a H STORY setting of
KEEP_ALL.

Note: For more details on this subject please refer to the introductory material on DDS available at the OMG DDS
Portal.

Guidance

e G1796: Explicitly define Data Distribution Service (DDS) Domain Topics.
» (G1798: Explicitly define all the Data Distribution Service (DDS) Domain data types.
» G1799: Explicitly associate data types to the Data Distribution Service (DDS) Topics within a DDS Domain

* (G1800: Explicitly identify Keys within the Data Distribution Service (DDS) data type that uniquely identify an
instance of a data object.

» (1801: Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within
a DDS Domain.

Page 117

http://portals.omg.org/dds
http://portals.omg.org/dds

Part 5: Developer Guidance

Part 5: Developer Guidance > Middleware > Messaging > Data Distribution Service (DDS) > DDS Data Local
Reconstruction Layer (DLRL)

P1197: DDS Data Local Reconstruction Layer (DLRL)

The Data Local Reconstruction Layer (DLRL) is an optional part of the Data-Distribution Service (DDS) specification
that provides a local object-cache abstraction built upon the core DCPS layer and requires application objects to comply
with the DLRL object metamodel which includes collections and relationships.

Note: The DLRL, a recent addition to the DDS specification, is particularly rich; implementations using this upper-
level profile of the specification are emerging.

Application developers use the DLRL to do the following:

» Describe classes of objects with the associated methods, data fields and relations
* Attach data fields to Data-Centric Publish-Subscribe (DCPS) entities

» Use native language constructs to manipulate objects (i.e., create, read, update, delete) using native language
constructs to seamlessly interact with the DCPS layer

* Manage objects and pointers to objects in a cache

Best Practices

» BP1832: Handle all Data Distribution Service (DDS) Data Local Reconstruction Layer (DLRL) Exceptions.
» BP1833: Use the Data Distribution Service (DDS) Object Model Profile for accessing message data as objects.

Page 118

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Messaging > Messaging with MSMQ

P1048: Messaging with MSMQ

Messaging in .NET uses Microsoft Message Queue (MSMQ). MSMQ is responsible for reliably delivering messages
between applications inside and outside the enterprise. MSMQ ensures reliable delivery by placing messages that fail to
reach their intended destination in a queue and then resending them once the destination is reachable.

a8 ==

Producer |
Application]
Consumern
, Application
"bt!’;_zrﬁ—
11067

MSMQ also supports transactions. It permits multiple operations on multiple queues, with all of the operations wrapped
in a single transaction, thus ensuring that either all or none of the operations will take effect. Microsoft Distributed
Transaction Coordinator (MSDTC) supports transactional access to MSMQ and other resources.

Best Practices

» BP1111: Mark all Microsoft Message Queue (MSMQ) messages as recoverable.

» BP1112: Specify all Microsoft Message Queue (MSMQ) queues as transactional if they support multiple-step
processes.

» BP1227: Do not allow installation of MSMQ-dependent clients.
» BP1230: Do not use the MSMQ Support Local Account sOr NT4 feature.

Page 119

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services

P1078: Web Services

A Web service is an application that exists in a distributed environment, such as the Internet. A Web service accepts

a request, performs its function based on the request, and returns a response. The request and the response can

be part of the same operation, or they can occur separately in which case the consumer does not need to wait for

a response. Web services tend to fall into one of two camps: those that use Extensible Markup Language (XML)
messages that follow the SOAP standard, popular with traditional enterprises, and Representational State Transfer
(REST) based communications. SOAP Web services usually have a formal interface described in a machine-processable
format (specifically, Web Services Description Language or WSDL). REST Web services do not require XML, SOAP, or
WSDL service-API definitions but best practice recommends using standardized formats and protocols.

A Web service can reside on top of existing legacy applications and expose services to the net. The Web services
architecture illustrated below implements the service-oriented architecture pattern. For more information on design
patterns, see Web Service Patterns: Java Edition by Paul B. Monday (http://apress.com/book/view/9781590590843).

Web Service Models

Web services have traditionally been used to connect people to services. However, as the Web service
infrastructure has matured, a new model has emerged, the service-to-service model.

Traditional Model

In a classic Web service, a request is usually made to a Web service using a Web browser. The request
is submitted to the Web service using HTTP or HTTPS over the Internet or an intranet. The Web service
processes the request and returns an HTML page that can be displayed in a Web browser.

A classic Web service has the following characteristics:

» Web pages appear via a Web browser
» Connection is via TCP/IP

» Transportis HTTP/HTTPS

* Message format is HTML

Service-to-Service Model

Application servers used to be responsible for providing machine-to-machine services. Now Web servers can
handle similar work. The Web server can pass a request as an XML payload embedded in a TCP/IP and HTTP
request, process the data, and respond. The response is typically in the form of an HTML Web page or an XML
payload that a client application can use.

Machine-to-machine Web services have the following characteristics:

« Two independent applications

* Two independent servers

» Connection is via TCP/IP

e Transportis HTTP (port 80)

« Message format is XML payload in SOAP format

Key Characteristics

Some key characteristics of Web services include the following:

« High-overhead interactions; may be too heavy for some applications
e Loosely coupled collaborators (e.g., client/server)
e Multiple layers of parsing, marshalling, and un-marshalling

* Non-standard content
Page 120

http://apress.com/book/view/9781590590843

Part 5: Developer Guidance
e Standard interaction protocol
« No support for services such as messaging and security
« Infant technology
* No support for pass-by-reference

Detailed Perspectives

* SOAP [P1068]

* Web Services Compliance [P1081]

* REST [P1398]

« WSDL [P1082]

e Insulation and Structure [P1035]

« Universal Description, Discovery, and Integration (UDDI) [P1075]
« Service Definition Framework [P1296]

Guidance

e (1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.
e (1088: Use isolation design patterns to define system functionality that manipulates Web services.
* G1090: Do not hard-code a Web service's endpoint.

Page 121

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services > SOAP

P1068: SOAP

SOAP is an XML message-based protocol. SOAP is lighter weight and requires less programming than similar protocols
such as CORBA and Distributed Component Object Model (DCOM). SOAP defines an extensible messaging
framework independent of programming models and other implementation-specific semantics.

The World Wide Web Consortium (W3C) provides this description of SOAP:

Note: Prior to SOAP v1.2 the official name was the Simple Object Access Protocol (SOAP); W3C dropped the
acronym expansion in SOAP v1.2.

"SOAP Version 1.2 (SOAP) is a lightweight protocol intended for exchanging structured information in a decentralized,
distributed environment. It uses XML technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols. The framework has been designed to be
independent of any particular programming model and other implementation specific semantics." [R1002]

Two major design goals for SOAP are simplicity and extensibility. SOAP attempts to meet these goals by omitting
distributed-system features from the messaging framework. Such features include but are not limited to reliability, security,
correlation, routing, and Message Exchange Patterns (MEPs). While it is anticipated that many features will be defined,
this specification provides specifics only for two MEPs. Other features are left to be defined as extensions by other
specifications.

SOAP is a protocol for exchanging structured information in a decentralized, distributed environment. It consists of three
parts that support interoperability:

» aframework or envelope that describes what is in a message and how to process it
» aset of encoding rules for the application-defined data types used in the message

» aconvention for representing remote procedure calls and responses that allow applications to correlate requests and
responses

Key Characteristics

SOAP is an XML message-based wire protocol.
SOAP is implemented by many language bindings.
SOAP is inherently stateless; consumers of SOAP services manage their own state.

SOAP relies on other standards to implement security directly.

Message Styles

The W3C WSDL 1.1 Specification identifies two message styles: Document and RPC. The purpose of the styles
determines how the content of the SOAP message body is formatted.

Document The SOAP Body contains one or more child elements called parts. There are no SOAP
formatting rules for what the SOAP Body contains; it contains whatever the sender and the
receiver agree upon.

Note: There is a Wrapped form of this style that is required to interoperate with Microsoft
Web services using Document style. There is no specification that defines this style.

RPC RPC implies that the SOAP Body contains an element with the name of the method or remote
procedure being invoked. This element in turn contains an element for each parameter of that
procedure.

Page 122

Part 5: Developer Guidance

Note: Document style can be interpreted as either an XML string or as a W3C Document Object Model (DOM)
Document Element. Microsoft has a technique called Wrapped that encapsulates the information being exchanged,
regardless of the style.

Serialization Formats

For applications that use serialization/deserialization to abstract away the data wire format, there is one more
choice to be made: the serialization format. The following table describes the two most popular serialization
formats today.

SOAP SOAP encoding uses a set of rules to serialize the data transferred between the client and
Encoding the server. The rules are defined in section 5 of the WSDL 1.1 Specification. These rules are
also referred to as "section 5 encoding." The rules specify how to serialize objects, structures,
arrays, and object graphs and directly use the predefined XML Schema data types. Generally, an
application using SOAP encoding should use the RPC mssage style.

Literal Data is serialized according to an independent external schema. There are no preset rules for
serializing objects, structures, and graphics, etc., in the literal encoding style. The industry is
overwhelmingly embracing XML Schemas.

Structure

A SOAP message comprises three parts: an envelope, an optional header, and a required body. The envelope
encapsulates the other two elements. The optional header contains one or more header elements that contain
meta-information about the method calls.

Soap Envelope
=soap Envelope=

Header

==zoap: Headar=

Body

= =oap: Body-

==zoap: Faalt=

11045

Envelope The Envelope is the root of the SOAP request. At a minimum, it defines the SOAP
namespace for SOAP 1.2. The envelope may define additional namespaces.

Header The Header contains auxiliary information as SOAP blocks, such as authentication,
routing information, or transaction identifier. The header is optional.

Body The Body contains the main information in one or more SOAP blocks; for example, a
SOAP block for RPC call. The body is mandatory and it must appear after the header.

Fault The Fault is a special block that indicates a protocol-level error. If present, it must
appear within a Body element.

SOAP is a protocol for exchanging structured information in a decentralized, distributed environment. It consists of three
parts that support interoperability:

Page 123

Part 5: Developer Guidance
a framework or envelope that describes what is in a message and how to process it
a set of encoding rules for the application-defined datatypes used in the message

a convention for representing remote procedure calls and responses that allow applications to correlate requests and
responses

Guidance

G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

(G1088: Use isolation design patterns to define system functionality that manipulates Web services.
G1093: Implement exception handlers for SOAP-based Web services.
G1095: Use W3C fault codes for all SOAP faults.

Page 124

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services > Web Services Compliance

P1081: Web Services Compliance

The Web Services Interoperability Organization (WS-I) is an open industry effort to promote Web services
interoperability across platforms, applications, and programming languages.

The WS-I goal is to be a standards integrator to help Web services advance in a structured, coherent manner as
standards evolve independently and in parallel. To support this, WS-1 is developing a set of profiles that provide
implementation guidelines for how to use related Web services specifications together for best interoperability.

WS- finalized the Simple SOAP Binding Profile as of 24 August 2004, the Attachments Profile as of 20 April 2006
with an errata dated 1 March 2008, and the Basic Profile 1.1 as of 10 April 2006. WS-l is also developing Sample
Applications, Testing Tools and an XML Schema Work Plan.

Guidance

* (G1080: Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web
service environments.

* (1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

* (1083: Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM)
documents as strings.

Page 125

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services > REST

P1398: REST

The Representational State Transfer (REST) architectural style is resource-centric service-oriented approach for
performing simple Create/Read/Update/Delete (CRUD) operations on remote information. REST consists of clients and
servers. Clients initiate requests to servers; servers process requests and return appropriate responses. Unlike SOAP,
REST responses are built around the transfer of context representations of whole resources. A resource essentially can
be any coherent and meaningful collection of data that may be addressed. A representation of a resource typically is a
document that captures the current or intended state of a resource.

A number of different protocol bindings can be the basis of RESTful architectures. Typically, resources are formatted

in Extensible Markup Language (XML) or JavaScript Object Notation (JSON), but other Multi-Purpose Internet Mail
Extensions (MIME) types may be used. Likewise, the typical Transport is the Hypertext Transfer Protocol (HTTP), but
the Extensible Messaging and Presence Protocol (XMPP), Java Message Service (JMS) and Simple Mail Transfer
Protocol (SMTP) have also been used. REST is not a standard; it is a way of using other application layer protocol
standards that already provide a vocabulary for applications based on the transfer of meaningful representational state.
REST is simpler to use than SOAP, which requires writing or using a provided middleware for both the server and the
client.

A RESTful service (also called a RESTful service API) is a simple service implemented using a MIME data encoding, a
Transport, and the principles of REST. It is a collection of resources, with three defined aspects:

» the base Uniform Resource Identifier (URI) for the service

» the MIME type of the data supported by the service

» the set of operations supported by the service using the transport protocol's methods (e.g., HTTP POST, GET, PUT or
DELETE)

Page 126

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services > WSDL

P1082: WSDL

Web Services Description Language (WSDL) is an XML-based language that is used to describe a Web service.
It describes the operations that are available from the Web service and it describes the data that flows between the
consumer and the producer of the service. In addition, it describes the endpoint that locates the Web service.

An endpoint is a connector construct used in assembling a service, system, Node or enterprise from components.

Specific endpoints represent and label one side of an interface used to exchange information with partner endpoints on

other components. Endpoints bind a component's internal application data and processes to infrastructure resources at

the interface. In the case of Web services, bindings are to a network protocol, its operations and message-formatted data.
Network infrastructure Transport endpoints are called ports.

Related endpoints connect components into services bound to, and running on top of, infrastructure or middleware
resources. This enables the reuse of standardized bindings and endpoints (port types) and considerably eases
interoperability.

WEDL Definitions

Types

11060 WSDL
Definitions

WSDL uses XML to define several types of standardized web services endpoints and bindings. Currently these types
include document-oriented and procedure-oriented. WSDL is extensible in that an architect or designer chooses the
most appropriate binding and port and the associated message format and network protocol the service's endpoints and
application messages are to use.

Guidance
e (1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

e (G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

Page 127

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services > Insulation and Structure

P1035: Insulation and Structure

Insulating the user of Web services from the implementation of the services enhances the maintainability and portability
of the overall system and aids in the migration to net-centricity. Application developers can use the facade or adapter
design pattern for Web services to insulate applications from the implementation details of the service. Services can then
change over time to match changing requirements and deployments. Legacy functionality can be similarly wrapped via

a service. It is important to not directly expose vendor-specific functionality via the services interface to enable the ready
reimplementation of the service if necessary.

Guidance

» (1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.
e (31088: Use isolation design patterns to define system functionality that manipulates Web services.
e (G1090: Do not hard-code a Web service's endpoint.

» G1237: Do not hard-code the configuration data of a Web service vendor.

Page 128

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services > Universal Description, Discovery, and Integration (UDDI)

P1075: Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration (UDDI) standard is an industry initiative for a Web services
registry. It enables businesses to access a universal pool of Web services. The UDDI registry contains yellow pages,
white pages, and so-called "green pages," like a phone book.

11052
White pages List point of contact information, such as
* Name
e Address
e Phone
+ Fax
e emall
Yellow pages List services that are available from businesses, such as
* Weather data
« Software development
* Project management
Green pages List service properties, such as
* Business processes
* Service descriptions
« Binding information
« Categorization of services
e XML version, type of encryption, and Document Type Definition (DTD)

UDDI is a platform-independent, open framework that allows automated consumers and suppliers to find each other,
assess mutual compatibilities, negotiate terms, and build the relationship. It supports human interaction as well as
machine-to-machine communication. People can use a UDDI browser to review services and find point-of-contact
information (white pages), and business information (yellow pages).

Like the Domain Name System (DNS), the UDDI registry comprises a network of servers on the internet. It is a SOAP-
based mechanism. The API specification focuses on the storage, organization, and architecture of the registry.

The UDDI project takes advantage of World Wide Web Consortium (W3C) and Internet Engineering Task Force
(IETF) standards such as eXtensible Markup Language (XML) and HTTP and Domain Name System (DNS) protocols.
Guidance

» (G1127: Use a UDDI specification that supports publishing discovery services.

* (1131: Use standards-based Universal Description, Discovery, and Integration (UDDI) application
programming interfaces (APIs) for all UDDI inquiries.

Page 129

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Web Services > Service Definition Framework

P1296: Service Definition Framework

A Service Definition Framework (SDF) provides a common frame of reference for service users, customers, developers,
providers, and managers. Its structure and methodology enable full definition of the Service Access Points (SAPS)

for a service. The purpose of the SDF is not to describe the internal workings of a service. Rather, it concentrates on
defining the boundary conditions for accessing a service through its service access point. The SDF also includes specific
technical parameters and engineering-level data that prospective service developers and providers can use to design and
implement new enterprise service offerings.

Complete an SDF entry for each enterprise service. Subsequently, register each service in a service registry (e.g., the
NCES Service Discovery service or the Air Force Service Management Tool). The SDF provides the basis for a design
specification where potential implementers of a new service will find the information required to implement the service.
The SDF should address the following information for each service:

* What the service does

» How the service works (from a black box perspective)

* Any required security mechanisms or restrictions

* Any pertinent performance or quality of service (QoS) information

* Points of contact for the service:

e Who is providing the service
« Who is responsible for the daily operation of the service
* Who is developing the service

» The specifics of how to bind to (access or use) the service.

Service Profiles

A service profile captures the black box architecture of a service. It would precede and guide one or more service
implementations documented in association with the SDF. The use of a service profile becomes critical in the case
of those enterprise services that have more than one implementation and implementer across the enterprise. The
profile provides the guidance needed to ensure that multiple service implementations provide a common consumer
interface and are interoperable.

Proposed SDF Lifecycle

The proposed SDF lifecycle is to assist service implementers in developing and maintaining an SDF entry during
the lifecycle of an enterprise service. Scenarios include the following:

* Creating an SDF Entry

« Changing a Registered SDF Entry

» Deprecating a Registered SDF Entry

» Accessing a Registered SDF Entry

The proposed SDF Lifecycle is consistent with the DoD Acquisition Steps defined in the DoD 5000 series
Directives and Instructions. The table below describes the proposed steps for the SDF lifecycle, along with
associated business processes, the service owner and mandatory categories for each phase.

Lifecycle Description Business Processes Service Mandatory
Element Owner Categories by
Phase
Concept Identify possible Examine mission threads and Portfolio Service
Developmenf need for a new search for services to fulfill them. Manager name, service
service and create Identify capability gaps. These description,
gaps become services within schedule

Page 130

justification for
service

Part 5: Developer Guidance

classification domains. Create
high level business or mission
capability statement. Perform
initial cost analysis and Analysis
of Alternatives. Define acquisition
approach and organizations to
execute following phase

Requirements Define service Identify specific organizations for Portfolio Semantic model,
and architecture and each type of user, Define service Manager to | pedigree,
Architecture| requirements requirements and semantics. Acquirer information
Define service architecture to security marking,
include interaction with other cpoints of
services and systems, basic contacts
service capabilities and service
deployment approach. Perform
Systems Program Office (SPO)
level cost analysis.
Service Create service Start configuration management: Acquirer Operations,
Design "black box" number of
interface specs + finalize semantics operations,
for handoff to « point to metadata repository security
developers o o] mechanisms,
 finalize classification details access criteria
» determine service level and restrictions,
agreements (SLAs) offered, service level
finish WSDL specification,
network
requirements,
SAP
Service Develop/purchase Development (generally follows Acquirer Consumer
Build service contractor's best practices) patterns,
schedule Beta,
operational
reference
Service Assure Acceptance test: Acquirer to Schedule:
Testing service meets Operator/ integration
specifications and + meets specifications Sustainer
requirements « plays well with others
* interoperability "seals of
approval" from authoritative
bodies
Service Install service Configuration management: Operator/ Schedule:
Deployment| instance(s) Sustainer deployment
e updating humans/summary
from monitoring
e measuring coarse-grained
triggers for action (scaling)
Service Operate service; Configuration management: Operator/ Schedule:
Operation concludes with EOL Sustainer operation

announcement.

e updating humans/summary
from monitoring

Page 131

Part 5: Developer Guidance

e measuring coarse grained
triggers for action (scaling)

service definition
information is still
available for use/
reuse; concludes
with purging of
service definition
information

Service Service is still being | Work with consumers to adopt new | Operator/ Schedule:
Deprecation| operated but is version of service, or replacement Sustainer deprecation

to be replaced or service(s) as appropriate

retired; concludes

with service EOL
Service Service is not Service migration and reuse Sustainer Schedule: retire
Retired operating;

Notional SDF Concept of Operations

The Notional SDF Concept of Operations (CONOPS) outlines a theoretical concept for Service Discovery. The

SDF concept focuses on why a service is needed and how it is used. The Notional SDF CONOPS addresses the
following issues:

e Key Assumptions:

« Location, composition, extensibility, syntax, failover, information assurance, alignment to COls and
applicable security classification level

« (Governance

e Services are made available via an Enterprise Service Bus or via the Web services stack

* The SDF will be used for defining services from many sources and multiple languages

e Creation of an SDF Entry

e Two scenarios in which a service will require the creation of an SDF entry:

« Capability already exists and will be "service enabled"

» Capability does not exist

* The SDF entry becomes part of the Key Interface Profile (KIP) for that service

« Services Lifecycle and SDF Development Process Flow

¢ Establishment of a business case

« Warfighter or COI has defined a need

e Service requirements analysis and definition

e Funding

* Resources assigned

« Design

¢ Development

e Test
¢ Deploy

e SDF Implementation

« SOA

Page 132

Part 5: Developer Guidance
e Publishing
« Discovery
* Binding

¢ Operations and maintenance
* Change Management
e Deprecation

* Monitoring and maintenance

Under SDF Implementation, NESI also advises that ConOps include Portfolio Management and Capability
Planning. NESI will add these components in future versions.

SDF Considerations
« Describe all services using a standard Service Definition Framework (SDF).

¢ Adhere to DoD Policy as a core definition for the SDF

« Extensions can be made to core definition to suit specific needs
* May want to extend "Required" fields (from core SDF)
« Capture and track associated Lifecycle Phase

e The "Owner" of the service (and SDF) will change as the Lifecycle Phase changes; update the SDF at each
Lifecycle phase.

« Begin capturing SDF data at the earliest possible Lifecycle Phase, preferably Concept Development.

* Not all information will be available
« Recommended to trace service capability back to operational needs, shortfalls and requirements
« Make SDF data accessible by storing contents either in an XML document in conformance with the XML

Schema or in the form of a set of database tables with a front-end.

« The XML Schema or database tables will contain all elements and attributes of the core (and extended)
SDF

« Common practices for database tables with a front-end include the following:
« Group SDF data elements into logical categories and reflect such in the User Interface (Ul) for ease of

use; do not just provide one large input form

* Reports are high value; being able to view SDF data via reports allows for relationships to be discovered
and services to be managed (Portfolio Management, Capability Based Planning)

» Role-based access for data editing is vital for information assurance and integrity; don't want Service
Owner A to edit Service Owner B's SDF

« Enforce security policies at the Data Level rather than at the application and/or Ul level; provides
stronger information assurance and accountability (audits); allows data entries and data fields to be
customized to each user/role

« Capture SDF data from discrete choices (lists) rather than just "free text"; while free text can be searched via
key word, it does not allow as much capability for data relationships and data mining.

* Make SDF data understandable and use terminology/labels relevant to the particular domain (enterprise).
« Designate minimally required data with respect to appropriate Lifecycle Phase needed for a complete
understanding of the service at that phase.

« Tie "Required" fields to lifecycle phases; some information may not be available at earlier phases, but would
be required before eventually moving into a later phase.

Page 133

Part 5: Developer Guidance
SDF Template

The SDF Template provides a sample logical model to help the service implementer to understand the big picture
for the Service Definition Framework. The logical SDF model, summarized in the following table, provides the
primary service element categories and service element names. Each service element represents information
that may or may not be relevant to the particular service being described. Some service elements may only

be applicable during certain phases in the service lifecycle. Other service elements may not apply to specific
technologies.

The attributes of a service that are necessary to effectively define and describe the service are identified within the
SDF and organized into the following categories:

* Interface information

e Security information

» Service level information

* Implementation information

* Point of contract (POC) information

« Service Access Point (SAP) information

All categories, with the exception of the SAP, are abstract and allow defining the service so as to encourage
semantic understanding of the service. The last category (SAP) is the concrete portion that is filled in after the
service implementation and deployment. The SAP binds the abstract service specification to the concrete service
interface as implemented by an actual process. Specific syntax, protocols and IP address required to use the
functionality provided by the service are contained in the SAP.

In the table, the service elements have an associated cardinality for inclusion in the SDF. Cardinality is interpreted
as follows:

» Cardinality = 1: Element is mandatory, one instance only

e Cardinality = 1..n: Element is mandatory, one to many ("n" = no upper limit, or upper limit is specified)

« Cardinality = 0..1: Element is optional, but limited to one instance if it is present

e Cardinality = 0..n: Element is optional, and there may be one instance or more if it is present.

Table 2 has an additional column, which is the recommended lifecycle phase where the given service element
applies. A detailed specification of Service "Data" Elements will be included in a future release of NESI.

Service Service Element Cardinality Service Development

Category Lifecycle Phase

Element

Interface information ServiceName 1 Concept Development
Service Description 1 Concept Development
Semantic Model 0.1 Requirements & Architecture
NumberOfDataTypes 1 Service Design
DataTypes 0..n Service Design
NumberOfOperations 1 Service Design
Operations 1l.n Service Design
ServicePedigree 1 Requirements & Architecture

Page 134

Part 5: Developer Guidance

Security information SecurityMechanisms 1 Service Design
AccessCriteriaAndRestrictions| 1 Service Design
InformationSecurityMarking 1 Requirements & Architecture

Service level NumberOfServicelLevels 1 Service Design

information
ServicelLevelSpecifications 0.. Service Design
NetworkRequirements 0.. Service Design

Implementation ConsumerPatterns 0.. Service Build

information
NumberOfScheduleDates 1 Concept Development
Schedule 1. Concept Development
NumberOfOperationalReferended Service Build
OperationalReference 0.. Service Build
VersioningApproach 0.. Service Design

POC information NumberOfContacts 1 Requirements & Architecture
Contacts 1. Requirements & Architecture

SAP information NumberOfSAPs 1 Service Design
ServiceAccessPoint 0.. Service Design

Page 135

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Enterprise Service Bus (ESB)

P1389: Enterprise Service Bus (ESB)

There are differing definitions within the computing industry and academia for the term Enterprise Service Bus (ESB).
Some definitions describe an ESB as an architectural style or enterprise design pattern and other definitions describe
an ESB as a middleware layer provided by a product or collection of products.

This perspective does not provide a new definition of ESB; rather, it explains ESB as an architectural style that provides
distributed invocation, mediation, and end-to-end management and security of services and service interactions to
support the larger architectural style known as Service-Oriented Architecture (SOA). In this perspective, as well as
throughout NESI, the terms ESB and ESB architectural style are synonymous.

A common goal for implementing an ESB is to reduce coupling in service interactions by providing architectural
components which act as intermediaries to provide mediation and service virtualization. This reduced coupling provides
for a clean separation of concerns in areas such as implementation technologies and standards, transport protocols,
design and messaging patterns, configuration management, personnel (to include developers, administrators, and
operational support personnel), and organizations.

Note: This definition of an ESB as an architectural style does not preclude vendors from providing solutions that
implement the ESB architectural style, nor does it prevent one from calling an ESB implementation an Enterprise
Service Bus.

The ESB architectural style requires the hosting of services. Without services, the resulting architecture would be
nothing more than Message Oriented Middleware (MOM) or a message broker. Implementing these services does not
necessarily requires the use of SOAP; the ESB architectural style often exposes many types of service implementations
such as services based on Representational State Transfer (REST; see also the REST [P1398] perspective in NESI
Part 5) or Java Message Service (JMS).

The ESB architectural style leverages the concept of a bus as a subsystem that transfers data between endpoints.
Traditionally, without the use of an ESB, the service provider and the consumer engaged in an interaction must agree on
the same protocol and message format. In essence, each protocol and message format becomes its own bus.

In contrast, an ESB implementation behaves as a universal bus by providing adapters that allow service providers and
service consumers to interact without concern for the specific protocol and format of each other. The end result is that the
provider and consumer are less coupled (for example in protocol, location, and message format). Each is still coupled to
an underlying protocol and format that are usually based on open standards. For example, a service consumer that wants
a service delivered using HTTP can easily interact with a service provider that offers services using JMS.

An ESB generally has core characteristics in the areas of services, invocation, messaging, mediation, transport,
management, and security as shown in the table below.

Services Support to host and manage services
Invocation Support for consumers to locating and binding to services
Messaging Support for service providers and consumers to communicate through the exchange

of well-defined messages through various communication patterns to include
synchronous, asynchronous, and publish and subscribe

Mediation Support for transformation, aggregation, adaptation, orchestration, and choreography.
Mediation may occur on many areas to include message content, transport protocol,
guality of service (QoS) parameters, service version, etc.

Transport Provides for routing, transport, security, and guaranteed delivery of message between
service providers and service consumers, often through the use of message routers
and adapters for various standards based communication protocols

Page 136

Part 5: Developer Guidance

Management Support for the management of service interactions and status to include, alerting,
auditing, logging, QoS monitoring, configuration management, and metric collection

Security Support for enforcing enterprise security polices and adapting to security threats

In addition to these core characteristics, an ESB generally provides the following capabilities:

An ESB allows for the service providers to provide data at a rate independent from the consumer's consumption

rate. ESB implementations often supports the pairing of consumer and providers based on QoS parameters and by
providing message filtering capabilities.

An ESB provided an opportunity for service providers to compartmentalize their implementations behind a well-defined
interface so that consumers can use the service without having to understand the internal details of the service.

An ESB enables loose coupling of service providers and consumers which aids integration and composeability.
Service consumers are blind to implementation technologies used by service providers and vice versa. Any number of
service providers may process a request message dynamically based on QoS or location. An ESB provides support
for late binding of service endpoints. Consumers and providers do not have to agree on transport protocol or endpoint
addresses.

An ESB support service versioning by isolating changes to services. Service consumers can continue making request
to older versions of a service while an ESB provides mediation services.

An ESB reduces the number of point-to-point contacts between service providers and service consumers easing
integration and making impact analysis for changes or vulnerabilities easier.

An ESB provides service logging to include what services are used, who uses them, the performance of the service
interactions, and exceptional conditions and errors.

An ESB supports fault tolerance through concepts such as intelligent routing, redundant service providers, and
execution of a formally specified business process to support and implement the recovery process.

An ESB supports composition and execution services to support business processes to include long-running
transactions. This is usually done through the use of a formally specified business process.

ESB implementations are aided by existing developer and engineer skills with technologies such as XML, XML Path
Language (XPATH), and eXtensible Style Language Transformations (XSLT).

An ESB is an enabler for reuse by allowing for expose legacy systems through the use of adapters resulting in a
possible cost savings.

An ESB helps manage risk through incremental SOA implementation.
An ESB Supports distributed SOA implementation.

Although an ESB may provide many advantages for SOA implementation, several challenges remain:

There is not an industry-wide agreed upon definition for ESB and there is not a single ESB standard. As a result,
vendors support various capabilities within their ESB support products which can lead to vendor dependence and
coupling.

An ESB infrastructure may increase latency between service consumers and service providers compared to a direct
stovepipe connection.

An ESB infrastructure can become a major point of failure in a system as well as a major target for penetration of
denial of service attacks.

Mapping between information exchange patterns may not be optimal.

The following general guidelines, in addition to formal NESI guidance, may help to mitigate these concerns.

Content providers should be responsible for translations, not the ESB since it forces the ESB development team to
have a detailed understanding data models and interfaces of service providers and service consumers.

Do not implement an ESB until you need one, and only implement one once you have a SOA strategic vision and a set
of adoption project plans. An ESB is a means to and end and not an end in itself. Delaying and ESB implementation
will save resources until such time they are needed an allow time for industry to mature standards and tools for
implementing the ESB.

Page 137

Part 5: Developer Guidance
e Adopt and Implement an ESB incrementally to build upon lessons learned.

» Provide a common set of management capabilities for services and endpoints including alerting, statistics, audits, and
logging for an ESB.

» Design and implement an ESB to scale beyond the performance requirements of all service providers and consumers
deployed within the ESB. XML performance for streaming data and transformation is particularly important. Non-
blocking input and output is also required to prevent components from blocking while waiting for other components to
respond.

» Design and implement an ESB to s support the overall enterprise security policies for the relevant organizations by
incorporating controls for overarching SOA security policies.

Guidance

* (G1910: Provide for transformation of XML messages using eXtensible Style Language Transformations (XSLT)
when implementing an Enterprise Service Bus (ESB).

« (G1912: Support the execution of a formally specified Business Process Execution Language (BPEL) when
implementing an Enterprise Service Bus (ESB).

Best Practices

» BP1908: Provide bidirectional mediation between transport protocols mandated in the Defense IT Standards
Registry (DISR) when implementing an Enterprise Service Bus (ESB).

» BP1909: Provide for filtering of XML messages using XML Path Language (XPath) when implementing an
Enterprise Service Bus (ESB).

» BP1911: Provide for routing of messages based on message content when implementing an Enterprise Service
Bus (ESB).

» BP1913: Provide for mediation between synchronous and asynchronous messages when implementing an
Enterprise Service Bus (ESB).

Page 138

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Software Communication Architecture

P1087: Software Communication Architecture

The Software Communications Architecture (SCA) establishes an implementation-independent framework with
baseline requirements for the development of software for an established hardware platform, such as software defined
radios. The SCA is an architectural framework created to maximize portability, interoperability, and configurability of
the software while still allowing the flexibility to address domain specific requirements and restrictions. Constraints on
software development imposed by the framework are on the interfaces and the structure of the software and not on the
implementation of the functions that are performed.

The framework places an emphasis on areas where reusability is affected and allows implementation unique
requirements to determine a specific application of the architecture. SCA specifications incorporate accepted industry
standards such as a subset of the Portable Operating System Interface (POSIX) specification and the Object
Management Group (OMG) CORBA specification.[R1109] The Joint Program Executive Office for the Joint Tactical
Radio System (JPEO JTRS) maintains a Standards site with SCA releases and Application Programming Interfaces
(APIs).[R1108]

SCA includes a real-time operating system functionality to provide multi-threaded support for all software executing on
the system. Software can include SCA applications, devices, and services. The exact functionality supported by the
Operating Environment is described by the Application Environment Profile (AEP) which is a subset of the POSIX
specification.

The OMG Domain Special Interest Group for Software Radios (SWRADIO DSIG) and Software Defined Radio Forum
(SDRF) are working together toward building an international commercial standard based on the SCA.

The purpose of this perspective is to provide guidance and reference material for Programs providing products and
services using SCA in order to increase interoperability and net-centricity.

Guidance

e G1713: Use an Operating Environment (OE) for all Software Communications Architecture (SCA) applications
that includes middleware which adheres to the Minimum CORBA Specification version 1.0.

» G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

Best Practices
» BP1715: Design SCA log services according to the OMG Lightweight Log Service Specification.
» BP1716: Develop applications for SCA-compliant systems using a higher order programming language.
« BP1880: Justify, document, and obtain a waiver for all radio terminal acquisitions that are not JTRS/SCA compliant.

Page 139

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > CORBA

P1011: CORBA

CORBA is the acronym for Common Object Request Broker Architecture. It is the Object Management Group (OMG)
open, vendor-independent architecture and infrastructure that computer applications use to work together over networks.
Using the Internet InterORB Protocol (IIOP), a CORBA-based program from any vendor, on almost any computer,
operating system, programming language, or network, can interoperate with a CORBA-based program from the same or
another vendor on almost any other computer, operating system, programming language, or network.

In general, the code that needs to be created to access an object remotely using CORBA can be implemented using well
established and well understood design patterns. Consequently, it is not difficult to write but it is tedious and subject to
human error during the writing process because much of it is of a cut-and-paste nature. Therefore, most Object Request
Broker (ORB) vendors have developed code generators that can auto-generate the required infrastructure code given the
definition of the interface between a client and a server. The use of these auto-generators is strongly encouraged.

The following diagram illustrates auto-generation of the infrastructure code from an interface defined using the CORBA
Interface Definition Language (IDL).

i
Stubs] ; .
........................ { o
Clinr | Server NG
fsgff; : adz Server Impl
11069

This diagram illustrates how the generated code is used within the CORBA infrastructure.

1071

Key features

Page 140

Part 5: Developer Guidance
Some of the key features of interest in the CORBA specifications follow:

« Internet InterORB Protocol (110P)
» Dynamic Invocation Interface (DIlI)
« Dynamic Skeleton Interface (DSI)
* Interface Repository (IFR)

« Objects by Value (OBV)

« CORBA Component Model (CCM)
« Portable Object Adapter (POA)

» General InterORB Protocol (GIOP)

« Javato Interface Definition Language (IDL) mapping

Guidance
* (G1118: Localize CORBA vendor-specific source code into separate modules.
e (G1119: Isolate user-modifiable configuration parameters from the CORBA application source code.
e G1121: Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.
» (G1123: Use the Fat Operation Technique in IDL operator invocation.
* (G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).
* (G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

» (G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

e (1205: Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

Best Practices
* BP1231: Use CORBA: : String_var in IDL to pass string types in C++.
» BP1232: Do not pass or return a zero or null pointer; instead, pass an empty string.
» BP1233: Do not assign CORBA: : St ri ng_var type to | NOUT method parameters.

» BP1234: Assign string values to OUT , | NOUT , or RETURN parameters using operations to allocate or duplicate
values rather than creating and deleting values.

e BP1235: Assign string values to returned-as-attribute values using operations to allocate or duplicate values rather
than creating and deleting values.

Page 141

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > .NET Framework

P1086: .NET Framework

To address the confusing maze of computer languages, libraries, tools, and toolkits that were necessary for creating multi-
tier applications, Microsoft developed the .NET Framework and integrated it into Microsoft Windows as a component.

It supports building and running multi-tier and Service-Oriented Architectures (SOAs), including Web services and
client and server applications. It simplifies the process of designing, developing, and testing software, allowing individual
developers to focus on core, application-specific code.

Microsoft summarizes the .NET Framework as

e A consistent, language-neutral, object-oriented programming environment.

» A code-execution environment that minimizes software deployment and versioning conflicts, guarantees safe
execution of code, and eliminates the performance problems of scripted or interpreted environments.

A Common Language Infrastructure (CLI) specification that defines an environment which allows multiple high-
level programming languages to be used across different computer platforms without being rewritten for specific
architectures.

» A consistent development environment.

* A framework composed of two key parts: an implementation of the CLI called the Common Language Runtime
(CLR) and the Unified Class Libraries.

In the Microsoft .NET development environment, a programmer writes software in any one of several Visual .NET
languages. These use a single, unified, object-oriented, hierarchical, and extensible set of class libraries to access the
system and common services such as XML web services, enterprise services, ADO.NET, and XML. Next, the language
source code is compiled into an intermediate Microsoft Intermediate Language (MSIL), which is later translated into
platform-specific native code that uses the CLR.

y Br—— ~——
e e e ‘\I
“Wisual Visual “Wizual Wisual
! Basic G4+ J# C#
MNET NET MET NET
Mlicrosof ndenmnodiale Uinified class ibrany
Languapes (MEIL) .NET
I Framework
Mative code
Commaon Language Runtime (CLR)

1064

Note: Microsoft, Hewlett-Packard, and Intel co-sponsored the submission of specifications for the Common
Language Infrastructure (CLI) and C# programming language to the international standardization organization
Ecma. These specifications are available as Technical Report 84 [R1350] and Technical Report 89 [R1351],
respectively. The Mono project is an open source, cross-platform, implementation these specifications that is
binary compatible with Microsoft.NET.

Best Practices

e« BP1097: Use the Syst em Text . St ri ngBui | der class for repetitive string modifications such as appending,
removing, replacing, or inserting characters.

« BP1098: Write all .NET code in C#.

Page 142

http://mono-project.com/Main_Page

Part 5: Developer Guidance
e BP1100: Compile all .NET code using the .NET Just-In-Time compiler.

Page 143

Part 5: Developer Guidance
Part 5: Developer Guidance > Middleware > Java EE Deployment Descriptors

P1037: Java EE Deployment Descriptors

Java has been extended to handle the complexity of enterprise computing through the Java Enterprise Edition (Java
EE, formerly termed Java 2 Enterprise Edition or J2EE). In the Java EE environment, packaging and deployment is
done using a Java Archive (JAR) file. A JAR file is a self-contained module that contains all of an application's Java class
files, static files, and deployment descriptor files. JAR files are created using a jar utility. There are multiple deployment
descriptors that correspond to the type of modules being deployed as indicated in the table below using the Java EE
specification.

Java EE Application Server
Web Containers

EJB Containers

Archive

g

Persistent
Sources

M=

Deployment
Descriptor

1041

The table below shows the Java EE standard deployment descriptor files and the specific applications to which they
apply. See http://java.sun.com/dtd/ for details of each XML file.

Component or Application Scope Deployment descriptors Packaging Archives
Web application Java EE web. XML .war

Enterprise bean Java EE ejb-jar. XML Jar

Resource adapter Java EE ra. XML rar

Enterprise application Java EE application. XML .ear

Client application Java EE application-client. XML

The format for a deployment descriptor is defined in both the EJB specification and the servlet specification. The Sun
standards are defined at the following locations:

Java EE environment applications

http://java.sun.com/products/ejb/docs.html

Non-JavaEE or standard Webapplications

http://java.sun.com/products/servlet/download.html

Note: Some vendors have extensions to the Java EE deployment descriptors or have specific additional
descriptors for their products. Refer to specific vendor documentation for these details.

Guidance

Page 144

http://java.sun.com/dtd/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html

Part 5: Developer Guidance
e (G1078: Document the use of non-Java EE-defined deployment descriptors.
» (G1079: Use deployment descriptors to isolate configuration data for Java EE applications.

Page 145

Part 5: Developer Guidance
Part 5: Developer Guidance > Source Code Migration to Support IPv4 and IPv6

P1396: Source Code Migration to Support IPv4 and IPv6

Retrofitting existing Internet Protocol (IP) version 4 (IPv4) software (using existing source code) for IP version
independence and developing new IP version-independent software require careful considerations centered on the
differences between IPv4 and IPv6. Migration also requires a consideration of the reality that IPv4 and IPv6 protocols are
going to co-exist on the same platforms and networks for the foreseeable future. In addition, software capable of both
IPv4 and IPv6 will have to operate correctly in its deployed environment including IPv4 only environments (due to the
possibilities of IPv6 being disabled on the underlying platform or the network's lack of support for IPv6).

In light of this, this perspective and its related guidance aims to aid software developers in developing and migrating
source code to support IP versions 4 and 6 by indicating some of the implementation differences between IPv4 and
IPv6 application programming interfaces (APIs) that cause interoperability issues and decrease code portability. This
perspective also outlines design impacts arising from supporting one or more version of IP. While some of the content in
this perspective only applies to source code containing low-level socket connections, most content contained herein is
relevant for all network-enabled source code implemented with any software programming language supporting network
socket communications using IP.

This perspective recognizes that many well written sources of IPv4 to IPv6 software migration documentation exist; rather
than repeat the information contained in these sources, this perspective provides a summary of common issues and offers
additional documentation links for further information and reference such as the following:

» NESI Part 4: Node Guidance Internet Protocol [P1139] and IPv4 to IPv6 Transition [P1140] perspectives

» DoD IPv6 Standard Profiles for IPv6 Capable Products Version 4.0 July 2009 (available via the Joint Interoperability
Test Command)

» Application Aspects of IPv6 Transition (Internet Engineering Task Force Request For Comments [RFC] 4038)

» Porting Applications to IPv6 HowTo (Eva M. Castro)

» Porting IPv4 Applications to IPv6 (Sukhdeep Singh Johar)

» Networking IPv6 User Guide for JDK/JRE 5.0 (Sun Microsystems)
» IPv6 Guide for Windows Sockets Applications (MSDN)

Software Transition Scenarios

Flexibility regarding Internet Protocol version is a desirable trait for software as is allows for software to operate in

different deployment scenarios. These different deployment scenarios often include heterogeneous environments

with varied levels of support for IPv6 in software and hardware as well as various employed transition strategies to
include the following:

« dual stack approaches where the operating system, hardware, and network supports simultaneous use of IPv4
and IPv6

« tunneling approaches to allow for transport of IPv6 packets on an IPv4 only network or vice versa
« translation approaches to support an IPv6 only system communicating with an IPv4 only system or vice versa

Therefore, in some cases it is desirable for software to work only with a given protocol version (IPv4 or IPv6) or
with both of them. The decision for which IP protocol versions to support is best made as a business decision
(based on factors such as schedule, cost, and risk) as well as a technical decision (based on factors such as
technical system requirements and the underlying standards used to implement the system).

Four cases (as outlined in RFC 4038) are useful in categorizing the transition of an application:
e Case 1. IPv4-only software deployed in a dual-stack environment. The operating system supports IPv6

hardware, and network, but applications are not yet migrated to support IPv6.

« Case 2. IPv4-only software and IPv6-only software deployed in a dual-stack environment. There are two
deployed and maintained versions of an application, one supporting IPv4-only and the other IPv6-only.

« Case 3. Software retrofitted to support both (simultaneously or one at a time) IPv4 and IPv6 in a dual-stack
environment.

Page 146

https://nesi.spawar.navy.mil/nesix//View/P1139
https://nesi.spawar.navy.mil/nesix//View/P1140
http://jitc.fhu.disa.mil/apl/ipv6/pdf/disr_ipv6_product_profile_v4.pdf
http://www.ietf.org/rfc/rfc4038.txt
http://www.ietf.org/rfc/rfc4038.txt
http://gsyc.escet.urjc.es/~eva/IPv6-web/ipv6.html
http://www.6journal.org/archive/00000047/01/porting_ipv4tov6.pdf
http://java.sun.com/j2se/1.5.0/docs/guide/net/ipv6_guide/index.html
http://msdn.microsoft.com/en-us/library/ms738649(VS.85).aspx

Part 5: Developer Guidance

« Case 4. Software retrofitted to support both (simultaneously or one at a time) IPv4 and IPv6 but only IPv4
is available in the environment; for example, in cases where IPv6 is disabled due to operational and/or
developmental considerations.

Case 1 is the current state for many legacy systems that have not undergone software update to support IPv6 as
modern hardware and operating systems usually support IPv4 and IPv6. Increasing, networks support both IPv4
and IPv6, and this is the general case for DoD networks. However, this is not the desired state since it has all the
shortcoming of IPv4 (such a more limited number of addresses compares to IPv6) and lacks the advantages of
IPv6 (such as better support for mobility).

Case 2 is undesirable since it often results in greater costs due to the requirement for two versions of the same
software, one to support IPv4 and another to support IPv6. This case also presents challenging configuration
management issues with respect to maintaining requirements, patches, deployments, and administration for the
two versions of the software.

Case 3 is the desirable state as it provides the greatest flexibility often at less cost with fewer configuration
management challenges when compared to case 2. The single software code-base reduces configuration
management of the system and, properly implemented, maintains cost efficiency.

Case 4 is a state that systems supporting IPv4 and IPv6 will likely encounter in their deployed environments;
systems must support operating in IPv4 only environments or risk loosing network connectivity. IPv6 support may
be disabled or not available within an operating system or network due to operational considerations or the current
state network migration from IPv4 support to dual stack capable.

Therefore, this perspective takes the approach of providing recommendations that support IPv4 and IPv6 capable
source code for deployment in a dual stack environment while supporting fail-over capability to operate in IPv4
only environments. It does this by providing guidance related to support software development in the categories
of: general design considerations, address structure considerations, socket functions considerations, and address
conversion functions considerations.

General Design Considerations

IPv4 Versus IPv6 Feature Differences

IPv4 and IPv6 do not share the same feature set; some features in IPv4 are not supported in IPv6, while newer
IPv6 features are not supported in IPv4. Software developers that use a feature only supported by IPv4 or
IPv6, but not both, will have to provide an implementation of the feature for use in the unsupported IP version
environments or redesign the software to avoid the use of the feature altogether. However, accommodating the
desired feature may require a non-trivial redesign of the software.

One example feature is broadcast support as implemented in IPv4. IPv6 does not provide support for broadcast,
but if does provide support for multicast. A software developer may choose to use multicast instead of broadcast
to support both IPv4 and IPv6 environments. Doing so would generally require less effort than implementing a
broadcast-like feature for IPv6; however, some effort will still be requires as the source code must use the proper
multicast addresses (IPv4 or IPv6 ones depending on the deployed environment) and socket configuration options
as they differ between the two IP versions. Another example feature supported differently by IPv4 and IPv6 is
anycast which is new to IPv6 and does not exist in IPv4.

Using Domain Names Rather than IP Addresses

Avoid using IP addresses within source code; use host names which are translated by name resolution functions
instead. The use of IP addresses within source code is discouraged for the following reasons:

« |IPv4 and IPv6 have different formats for representing IP addresses. Using host names rather than IP
addresses simplifies, or eliminates, code that is required to parse destinations.

« |Pv6 addresses cannot be read by an IPv4-only device, while an IPv6 device can only read IPv4 addresses if a
special address format, which may or may not be employed in allocating addresses, is used.

* |Pv6 addresses are much more dynamic that IPv4 addresses and are subject to change at runtime.

» IPv6 promotes the use of multiple IP addresses for each IP network addressable resource. Multiple IP
addresses may resolve to the same domain name.

Page 147

Part 5: Developer Guidance

Software should avoid storing or using IP addresses for the aforementioned reasons; store and use domain names
rather than IP addresses. IPv4 enabled software designed to store IP addresses should identify and eliminate the
storage of IP address in migrating to support IPv6. Replace all pre-stored addresses (including special address
such as wildcard, loopback, and broadcast addresses hard-coded within constants) with domain names.

Some systems such as peer to peer systems operating in a tactical environment with highly dynamic mobile
networks and intermittent connectivity may need to cache IP addresses for performance reasons or due to the
fact that name resolution may not be supported by the underlying network in a sufficient fashion. In such systems
consider IP address caches as temporary and not a source of reliable information. In these cases, utilize features
such as time to live parameters to purge the IP addresses.

User Interfaces Considerations for IP Addresses

IPv6 address representations are longer than IPv4 addresses and have a different format; software desiring to
correctly process such addresses may require changes to support both address types to include changes in
memory allocation, parsing routines, and data entry user interfaces. The changes required may be reduced if the
software is designed to use host names rather than IP addresses.

Parsing IP Addresses

IPv4 and IPv6 addresses follow different formats. IPv4 addresses are represented as four octets written in decimal
notation separated by a period. IPv4 uses a colon to distinguish the port from the IP addresses. In contrast,

IPv6 addresses are represented as pairs of octets written in hexadecimal notation separated by a colon. This
necessitates parsing routines to handle both types of IP addresses.

IP addresses contained within Uniform Resource Locators (URLS) are a particular problem for parsers, especially
for IPv6 addresses. Format for Literal IPv6 Addresses in URL's [RFC2732] specifies enclosing literal IPv6
addresses contained within URLSs in square brackets ("[]").

Another problem with IP address parsers comes when the input is actually a combination of an IP address

and port number. With IPv4 these are often coupled with a colon; for example, 192. 0. 2. 1: 80. However, this
approach would be ambiguous with IPv6, as colons are already used to structure the address. Therefore, the
IP address parsers that take the port number separated with a colon should distinguish between IPv4 and IPv6
addresses. A common way to do this is to enclose the address portion in brackets, as is done with URLSs.

Some software may also need to specify IPv6 prefixes and lengths. The prefix length should be inserted outside of
the address contained within square brackets.

Due to all of these issues with the parsing of IP addresses, the use of address literals is strongly discouraged
for general-purpose direct input to the applications. Using host names when possible, rather than IP addresses,
simplifies or negates the need to parse IP addresses.

Comparing IP Addresses

Source code that compares IP addresses for equality may require changes to support comparison of IP addresses
in software that supports both IPv4 and IPv6. IPv6 and IPv4 address structures differ, and comparing them may
cause problems at compile time or runtime. Furthermore, source code modification may be necessary to compare
semantically equivalent but representatively different IP addresses, such as an IPv6 address mapped to an IPv4
address, correctly.

Listening For Both IPv4 and IPv6 Connections

Source code needing to listen for both IPv4 and IPv6 connections may do so by listening to a socket bound to a
IPv6 wildcard (sometimes called anylocal) address. However such software may be deployed in an environment
where support for internal IPv4 mapped IPv6 addresses is disabled (for example due to security concerns). In
these environments, the resulting software would not receive both IPv4 and IPv6 connections as expected. A
more reliable, although more complicated, option is to create and listen on two separate sockets, one for IPv4-only
incoming connections and another for IPv6-only incoming connections.

Handling Multiple IP Addresses

Page 148

http://www.ietf.org/rfc/rfc2732.txt

Part 5: Developer Guidance

It is common for a given network addressable resource, such as a computer, to have more than one IP address.
One reason is unlike IPv4, IPv6 promotes the use of multiple IP addresses per IP enabled device. Another
reason is that a given resource may have more than one network interface. A given resource may also have IPv4
addresses as well as IPv6 addresses.

However, communication between two software systems only requires a single source and destination pair. In
addition to specifying the communication endpoints, the source and destination IP addresses are a key factor in
determining the route of IP packets within a network, especially for IPv6 networks.

Often the underlying operating system determines the source IP address for connections originating from systems
with multiple IP addresses based up a best choice configuration. Selecting the destination IP address is usually
left to the individual software application. In order to handle communications in a robust way, when connecting to
a given hostname which resolves to more than one IP address (which is common for the reasons stated above),
software should try connecting to the an address returned by the resolver and should handle failures by trying to
connect to another resolved address until a connection is successful or the list is exhausted.

Address Structure Considerations

The longer address length of IPv6 addresses as compared to IPv4 requires a different socket address structure.
The socket APIs provide two IP version specific socket address structures, sockaddr _i n and sockaddr _i n6 for
IPv4 and IPv6 respectively.

Software developers desiring to support both IPv4 and IPv6 can choose to use branching logic in their code and
use the appropriate socket address structure; however this may unnecessarily complicate the source code. When
writing portable code, it is preferable to eliminate protocol version dependencies from the source code. There is

a new data structure, sockaddr _st or age, designed to store all supported protocol-specific address structures
and adequately aligned to be cast to the a specific address structure. Hence, software developers should use
sockaddr _st or age structure to store IPv4 and IPv6 addresses.

The various socket structures vary is size. Software developers will need to verify that the proper amount of
memory is allocated for the appropriate structure in use and verify the memory allocated within any source code
that expose or manipulates the size of socket structures or IP addresses.

Macros (for programming languages that support them) sometimes specify socked address structures within
source code and are another issue for source code portability. IPv4 APIs use the AF_I NET macro, while IPv6 APIs
use the AF_I NET6 macro. In order to support both IP versions in a dual stack environment, use the AF_UNSPEC
macro as it provides the flexibility of being able to handle multiple address families to include IPv4 and IPv6.

Socket Functions Considerations

To support IPv6, adaptations to the socket APIs were necessary; the socket function are largely unchanged, but
the allowable options to the various function arguments were updated to support IPv6. Software developers need
to modify the arguments passed to socket functions to achieve code portability in a dual stack environment. In
particular, software developers should use the generic sockaddr _st or age address structure described above
for the appropriate socket function arguments used to send or receive packets, as this practice supports operation
in a dual stack environment.

Address Conversion Functions Considerations

Software developers should use the new functions i net _nt op() andi net _pton() to convert IPv4 and IPv6
addresses from binary to string and string to binary representations. Use the new functions in both IPv4 and IPv6
operations.

Software developers should use get addr i nf o() and get nanei nf o() to make name and address conversions
IP version agnostic. The combination of these two functions allows software to resolve communication protocols
supported by the system completely agnostic of IP version.

Best Practices

BP1834: Develop software to operate in IPv4-only environments.
BP1914: Develop software to operate in dual stack environments.
Page 149

BP1924:
BP1925:
BP1926:
BP1927:
BP1928:
BP1929:
BP1930:
BP1931:
BP1932:

Part 5: Developer Guidance
Develop software to be IP version agnostic.
Identify all IPv4 dependent code in source code.
Eliminate dependencies on a fixed IP address.
Use the get addr i nf o() function when resolving the address of an IP host.
Use the get namei nf o() function when getting the hostname of an IP address.
Support the colon (:) in both IPv4 and IPv6 IP addresses.
Identify network addressable resources using host names.
Use generic address structures for both IPv4 and IPv6 addresses.
Use an alternative to broadcast addresses in software systems using IPv6.

Page 150

Part 5: Developer Guidance
Part 5: Developer Guidance > Logging

P1448: Logging

Modern software systems are increasingly comprised of modular, often distributed, components. Greater use of abstract
Application Programming Interfaces (API) has lead to further reuse of software components. Software systems today
are often composed using open-source, commercial, and custom software. Maintaining consistent logging practices and
techniques through a large collection of software components is difficult.

This perspective, to support modularization, improve the usefulness of logging data and the feasibility of aggregated
logging data better, provides a set of logging-related Guidance and Best Practice statements as well as supporting
contextual information. In particular, this perspective provides guidance for the software developer in order to ensure
logging methods within a code-base do not inhibit logging code interoperability or reusability.

Note: The Enterprise Management [P1330] perspective provides an additional discussion of logging and auditing
activities from an operational point of view.

Logging, including the functions of monitoring and auditing logs, is beneficial for identifying security incidents, isolating
faults, policy violations, suspicious activity, and proactively identifying operational problems. The following is a partial list
of data types to consider for logging in order for logging to be most effective:

» System, infrastructure, application, and component startup and shutdown

e System, infrastructure, application, and component configuration changes

» Changes to persistent data (e.g., additions, edit, and deletions)

* Resource usage statistics such as counter updates, particularly Service Level Agreement (SLA) thresholds such as
high and low thresholds for memory, disk, processor, and bandwidth utilization

e Security exceptions (e.g., Permission Denied, Resource Not Found)

» Authentication and Authorization events (including successful and failed events)
» Errors and exceptional conditions

» Debug and trace information (only if so configured)

In addition to logging the correct sources and types of data, it is important to safeguard security and privacy related
information by not exposing sensitive information inappropriately through logging. In cases where there is a requirement
to log sensitive security- and privacy-related information, include safeguards (for example, using a security-specific logger
to encrypt sensitive logging information) to protect the information from unauthorized, especially unattended exposure. In
general, do not log the following types of information without adequate safeguards in place:

» Sensitive security data (e.g., passwords, private keys)

» Privacy-constrained, proprietary, sensitive, or classified data

» Unsanitized user input (in order to prevent security exploits, such as through buffer overflow or injection attacks, and to
prevent an attacker from logging deceptive log data)

e Binary data

Logging Abstraction

Modern logging allows for an abstraction of the logging APIs that acts as a stable but customizable facade to

the rest of the logging infrastructure. This allows for a substitution or reconfiguration of the underlying logging
implementation during the deployment of the system. This is important for library or service developers, as the
consumer of the library or service can configure the logging implementation to meet the requirements of the overall
system.

Most logging facades support the following:

« The ability to swap logging implementations without making changes to source code using the facade or to the
facade source code

e The ability to filter logs based on log level through configuration

Page 151

https://nesi.spawar.navy.mil/nesix//View/P1330

Part 5: Developer Guidance
« Configurable output handlers

Some examples of logging facades follow:

Facade Description Supported
Languages
Simple Logging Facade for | SLF4J is a facade various logging frameworks Java
Java (SLF4J) allowing the end user to plug in the desired logging
framework at deployment time
Apache Commons Logging | Apache Commons Logging provides a thin adapter Java
allowing configurable bridging to other well known
logging systems.
Log4net Log4net is a port of log4j framework to the .NET .NET
runtime. It supports a variety of output targets.

Logging Implementation and Frameworks

Most logging facades are just a thin wrapper API and require the specifications of an additional logging
implementation library to conduct the actual logging, although some logging facades include additional
capability to conduct the actual logging along with the facade itself. In either case, there is some overlap in the
capabilities provided by the facade and the capabilities provided by good logging implementations. Good logging
implementations include the capability to do the following:

» Filter logs based on log level through configuration

e Configure output handlers

e Configure log format and metadata

« Configure log persistent storage format to compression, encryption, indexing structure

» Support log rotation and truncation

Implementation Description Supported Languages
Library
Log4J Log4J is an Apache logging API supporting control of Java (Log4J ports support
log statements output granularity. It is configurable at C, C++, C#, Perl, Python,
runtime using external configuration files. Ruby, .NET, and Eiffel)
Syslog Syslog is the de facto logging standard on UNIX- Various to include C, C++,
based systems. Syslog is widely implemented shell scripting
and supported by a variety of devices, computing
platforms, programming languages, and shell scripting
environments.
Pantheios Pantheios is a platform-independent logging API. It C,C++
supports filtering of log messages based on severity
level and supports configurable output handlers.

In addition, most logging implementations support routing logs to an enterprise logging framework such as routing

logs to a centralized server. Two standards-based and common logging infrastructures are Syslog and Simple
Network Management Protocol (SNMP).

Syslog is a logging implementation as well as a protocol used to transport logging data across a network. Syslog
provides a collection of logging related APls, services, message formats, and protocols for the generation,
transport, and storage of logging messages.

Page 152

http://www.slf4j.org/
http://www.slf4j.org/
http://commons.apache.org/logging/
http://logging.apache.org/log4net/index.html
http://logging.apache.org/log4j/
http://datatracker.ietf.org/wg/syslog/
http://pantheios.sourceforge.net/

Part 5: Developer Guidance

SNMP provides standard means for message communication as well as a hierarchical data structure, called a
Management Information Base (MIB), that describes status of network accessable devices. SNMP provides a
standards-based method to send log messages in the form of a "trap" and is often used in an enterprise logging
architecture. SNMP also provides the ability to poll the status of network-accessible resources which is often used
to create log messages.

Important Practices to Ensure Usefulness of Logged Data

Logging data is only useful if it is trustable, reconcilable, searchable, and rich enough with data to provide end
value while not overwhelming the storage capacity or providing user of the logs with too much information. In other
words, logging statements should contain concise data as well as metadata to provide better understanding and
context of the data. Logs should be easy to read and parse (for both humans and computers) and not so cryptic or
so detailed that important entries are lost or obfuscated.

» Each log entry should contain a timestamp to resolve the sequence of events. The code conducting the logging
may provide the timestamp or the logging implementation may provide the timestamp automatically. In some
cases, the sequence of events may be captured across multiple logs; thus timestamps should be of sufficient
resolution to allow for correlating the log entries. In addition, the time must be synchronized to the same time
across all components that conduct logging; see the Network Time Service [P1144] perspective for more
information on time synchronization.

» Software developers should use a logging facade that supports multiple logging levels, and each log entry
should be assigned to the appropriate log level. Log levels vary between logging framework implementations;
log levels such as Error, Warn, Info, Debug, and Trace are typical. Common supported and documented
logging levels are preferable to uncommon logging levels that may limit the ability to change the underlying
logging implementation. Custom or unusual logging levels may require extra mediation in coalition, joint, or
other federated environments.

e ltis important to prove contextual information in log entries in order to allow for consumers of the logs to
properly analyze the data. Unigue identifiers (such as user, transaction, and thread identifiers) are useful
information to include when logging.

« Logs should be easy to consume by software as well as people; consequently, most logging implementatins
make use of plain text for log entries. When possible, log entries should be a single line in length per log entry.
An exception may be when logging exceptions and stack traces. Single line log entries are easier to sort,
correlate, and filter with command line tools.

« Developers should rely on the underlying logging implementation to provide metadata about the source of the
logging information (for example processing context such as the class name, method name, and line of code).
Hard coding this into the logging statement is error prone and becomes a maintenance problem as the code
evolves. It is more effective to allow the logging implementation to include this information through configuration
of the logging implementation.

« Developers should rely on the underlying logging storage infrastructure implementation to provide for log
rotation and not provide custom code to conduct log rotation. Details such as rotation thresholds and schedules
are best handled at deployment time and are best implemented through a configuration change in the logging
implementation.

» Developers should use an underlying logging implementation that supports multiple concurrent output handlers,
which are specified through configuration changes. This allows log entries to be logged to different (sometime
simultaneously) locations (such as files, console, database, syslog server, or null output).

Guidance

G1010: Use a logging facade that allows for specifying the underlying logging framework during software
deployment.

G1340: Log all exceptional conditions.
G1346: Audit database access.
G1348: Log database transactions.

Best Practices

BP1715: Design SCA log services according to the OMG Lightweight Log Service Specification.
Page 153

https://nesi.spawar.navy.mil/nesix//View/P1144

Part 5: Developer Guidance
BP1948: Use a logging facade that supports timestamps.
BP1949: Write logging entries such that they are a single line in length.
BP1950: Use a logging facade that supports multiple logging levels.
BP1951: Use a logging framework that supports log rotation.
BP1952: Use a logging facade that supports configurable output handlers.

Page 154

Part 5: Developer Guidance

G1001

Use formal standards to define public interfaces.
Rationale:

It is important to use a common language to define the interfaces so producers and consumers can work
independently and together.

There are many standards for defining interfaces (UML, WSDL, and CORBA). Use a documented standard that is
widely accepted by industry.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Make Data Interoperable
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design
NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Do UML documents exist that describe the shared interfaces?

Procedure:

Ask for the design documents to be provided during the review process.

Example:

None.

2) Test:

Are there WSDL files that document the interface to Web services?

Procedure:

Look for the existence of . W5DL files.

Example:

None.

3) Test:

Are there IDL files that document the interfaces to CORBA services?

Procedure:

Look for the existence of . i dl files.

Example:

None.
Page 155

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1256
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1002

Separate public interfaces from implementation.
Rationale:

This guidance encourages clean separation between interface and implementation details for all types of application
development. This allows components and systems to be loosely coupled. The flexibility allows groups of
developers to work independently and in parallel to the contract defined by the interface.

Another benefit of hiding implementation details is that it allows the implementation to change without affecting users
of the interface. This means the interface can support dynamic and pluggable implementation.

Finally, separating the implementation from the interface allows for version control of the interface separate from the
implementation.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Extensibility

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design
NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design
NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

C++: Check to make sure interfaces are defined as pure virtual functions.

Procedure:

Make sure C++ classes are defined in header files. Classes that represent external interfaces should contain only pure
virtual functions. Make sure the class does not declare non-constant data members. Also, make sure it does not define
default implementation. An interface should provide no default behavior.

Example:

None.

2) Test:

C: Check to make sure functions are declared in a header file using prototypes.

Procedure:

Make sure each library function has a prototype declaration in the header file.

Example:

None.

Page 156

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1282
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1003

Separate shared Application Programming Interfaces (APIs) from internal APIs.
Rationale:

The APIs that are intended to be shared with outside consumers need to remain fairly static in order to facilitate use
by the consumers. The consumer and the producer should mutually agree to changes in APIs.

Shared APIs should only have code related to the shared API functionality.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Information Assurance/Security / Design Tenet: Cross-
Security-Domains Exchange

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the API contain extraneous interfaces or code that is not required for the API functionality?

Procedure:

Use coverage tool/Junit to make sure there is no extraneous code.

Example:

None.

Page 157

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1240
https://nesi.spawar.navy.mil/nesix//View/P1246
https://nesi.spawar.navy.mil/nesix//View/P1246
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1004

Make public interfaces backward-compatible within the constraints of a published deprecation policy.
Rationale:

The public interface is basically a contract between the producer of the functionality defined in an interface and
the consumer of the functionality. This and related guidance statements are intended to ensure that this contract
remains intact and that the consumer of the functionality is not broken during the update cycle of the interface.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / XML / XML Semantics / XML
Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / XML / XML Semantics / XML
Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - Registered / XML Semantics / XML Schema Documents / Versioning XML Schemas
NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet
/ Service Understandability - COI Data Models / XML Semantics / XML Schema Documents / Versioning XML
Schemas

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / XML Semantics /
XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / XML / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 5: Developer Guidance / Data / XML / XML Semantics / XML Schema Documents / Versioning XML
Schemas

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the public interface (interfaces that are used externally, outside the project's domain) contain versioning
information?

Procedure:

Check to make sure the interface/class has versioning information.

Example:

None.

Page 158

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1385
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance
2) Test:

Does the document structure contain a document that indicates the shelf life of deprecated interfaces?

Procedure:

Check for project documents that have information on the life of deprecated interfaces.

Example:

None.

Page 159

Part 5: Developer Guidance

G1008

Isolate the Web service portlet from web hosting infrastructure dependencies by using the Web Services for
Remote Portlets (WSRP) Specification protocol.

Rationale:

Insulating platform-specific code (for example code dealing with operating system path conventions) using standard
abstractions or custom classes will keep all non-portable code in one place and prevent proliferation of non-portable
code throughout the application.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the application contain any platform-specific code that has not been abstracted?

Procedure;

Check code that is non-portable; for instance, the code does not use back slashes (Windows) or forward slashes
(UNIX) in literal strings to create a path.

Example:

String path = "\tnp";

2) Test:

Is platform-specific code isolated into a single class or file?

Procedure:

Search the files for platform-specific code.

Example:

None.

Page 160

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1010

Use a logging facade that allows for specifying the underlying logging framework during software deployment.
Rationale:

Modern software systems are increasingly comprised of modular, often distributed, components. These components
are often based on a number of Application Programming Interfaces (APIs) as well as open-source, commercial,
and custom software. Maintaining consistent logging practices and techniques through a large collection of software
components is difficult.

Using a logging facade allows for specifying the underlying logging framework during software deployment which
improves code portability and interoperability by allowing for the configuration of the logging implementation to meet
the requirements of the overall system.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design
NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design
NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity
NESI / Part 5: Developer Guidance / Logging

Evaluation Criteria:
1) Test:

Is logging conducted within source code using a logging facade which allows for specifying the underlying logging
framework during software deployment?

Procedure:

Examine source code and ensure the code uses a facade to abstract the logging implenentation. Also examine
software to ensure that the logging implementation may be specified and configured during deployment.

Example:

None.

Page 161

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1011

Make components independently deployable.
Rationale:

Independently deployable components do not have any dependencies on other components. This is often
unattainable because components are often aggregations of lower-level components. Exceptions to this rule can
occur if the relationships between components are one or more of the following:

» well-defined and well thought out
e carefully managed
» externally configurable

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Develop Design Patterns for Data and Services / Implement a
Component-Based Architecture

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Evolve Computing Infrastructure / Implement a
Component-Based Architecture

NESI / Part 5: Developer Guidance / Implement a Component-Based Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Is the component dependent on other components?

Procedure:

Check for dependencies.

Example:

None.

Page 162

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1406
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1429
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1012

Use a set of services to expose component functionality.
Rationale:

By exposing discrete units of functionality as services, business and data integrity remain intact. A service receives
a request, processes it, and returns the result to the requester as a single operation.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Scalability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Develop Design Patterns for Data and Services / Implement a
Component-Based Architecture

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Evolve Computing Infrastructure / Implement a
Component-Based Architecture

NESI / Part 5: Developer Guidance / Implement a Component-Based Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are there Web Application Archive (.war) files that contain the component?

Procedure;

Check for the occurrence of . war files.

Example:

None.

2) Test:

Are there WSDL files that define the services?

Procedure:

Check for the occurrence of . wsdl files.

Example:

None.

Page 163

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1270
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1406
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1429
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1014

Access databases through open standard interfaces.

Rationale:

The use of non-standard interfaces can cause portability issues. Standards-based database interfaces promote
database independence. For example, Open Database Connectivity (ODBC) is a standard database interface for
referencing databases with C/C++ and .NET, while Java Database Connection (JDBC) is a standard Application
Programming Interface (API) for accessing databases with Java.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test:

Are standard interfaces used to access databases?

Procedure;

Check that standards-based interfaces are used to access databases; for example, ODBC for C,C++, or .NET
languages, or JDBC for Java.

Example:

None.

Page 164

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1018

Assign version identifiers to all public interfaces.
Rationale:

Assigning versions is necessary when determining compatibility between the interface and its consumer. Versioning
public interfaces allows all parties to track the evolution of the interface for backward compatibility. This can help
consumers plan for integration and migration. It is important to have the version information in the shared public
interface code because it identifies the actual interface to which consumers of the interface will be coding. Another
benefit is that it allows tools to generate the documentation automatically so it does not need to be in two places.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the shared public interface code contain versioning information?

Procedure;

Inspect public interfaces or their supporting documentation for version identifiers.

Example:

None.

Page 165

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1019

Deprecate public interfaces in accordance with a published deprecation policy.
Rationale:

By deprecating instead of removing interfaces, development teams can plan for software migration and continue to
run the software with existing (but deprecated) interfaces.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / XML / XML Semantics / XML
Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / XML / XML Semantics / XML
Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - Registered / XML Semantics / XML Schema Documents / Versioning XML Schemas
NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet
/ Service Understandability - COI Data Models / XML Semantics / XML Schema Documents / Versioning XML
Schemas

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / XML Semantics /
XML Schema Documents / Versioning XML Schemas

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / XML / XML Semantics / XML Schema Documents / Versioning XML Schemas

NESI / Part 5: Developer Guidance / Data / XML / XML Semantics / XML Schema Documents / Versioning XML
Schemas

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:
Are public interfaces appropriately deprecated?
Procedure:
Check the project documentation for deprecation policy.

Check that interfaces are properly marked and removed according to the deprecation policy.

Page 166

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1385
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance
Example:

None.

Page 167

Part 5: Developer Guidance

G1022

Insulate public interfaces from compile-time dependencies.
Rationale:

Compile-time dependencies bind not only the capabilities of the included library, module or object, but also the
limitations and vulnerabilities to the software being compiled. If the compiled software is a module that provides

a public interface itself, any other software that uses that public interface also assumes the benefits, constraints
and risks of the underlying compile-time dependencies. While this can significantly optimize the performance of

a module, it can also make use of the public interface difficult if the constraints include hardware architecture
limitations or if the vulnerabilities include predictable memory targets for attacks. Later binding techniques (at link
time or better yet, run time) can minimize these exposures and maximize flexibility, robustness, interoperability and
maintainability.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Is the packaging or deployment of the public interface self-contained and isolated to only the public interface(s)?

Procedure;

Check to make sure that the jar, library, assembly, and WSDL only contain the agreed-upon public interface (interfaces
being shared externally).

Example:

None.

2) Test:

Does the container (jars, libraries, assemblies, WSDL) contain files other than the interface?

Procedure:

Check to make sure the library does not include or rely upon any other files such as resource files, properties files,
configuration files, other libraries, XML files, and so on that would force the repackaging of the public interface.

Example:

None.

3) Test:

Are there any outside influences that could affect the packaging of the public interface?

Page 168

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance
Procedure:

Check the public interface for dependence on resource files, properties files, configuration files, XML files, and other
libraries or packages.

Example:

None.

Page 169

Part 5: Developer Guidance

G1027

Internally document all source code developed with Department of Defense (DoD) funding.
Rationale:

Well-documented source code is easier to maintain and enhance over time. It is hard enough to get documentation
about software and to keep it up to date. If the documentation is not internal to the source code, the chances

that the software is current and up-to-date decreases. In recent years, the trend has been to generate external
documentation about the software by processing the source code and comments (e.g., Javadoc).

In addition to documenting the functionality of the source code, it is important to capture the configuration control
information (e.g., Concurrent Versioning System or CVS, Subversion, and Web-based Distributed Authoring and
Versioning or WebDAV).

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Standard Interface Documentation
NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Standard Interface
Documentation

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Standard Interface Documentation
NESI / Part 5: Developer Guidance / Standard Interface Documentation

Evaluation Criteria:
1) Test:

Do all the source code files have a header that includes configuration information?

Procedure:

Scan each file and make sure the header also includes configuration management information such as author, date
created, and a history of modifications and versions.

Example:

None.

2) Test:

Do all the source code files have internal documentation for attributes, methods that a computer process?

Procedure:

Scan the source files and make sure they are internally documented with tags such as Javadoc or XML tags.

Example:

None.

Page 170

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1030

Use a user interface component library.
Rationale:

User interface component libraries provide a standardized, well-tested look-and-feel without significant development
effort. However, care must be taken to ensure that the application code is insulated from dependencies upon a
specific Ul component library.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Thick Clients

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces / Thick
Clients

NESI / Part 5: Developer Guidance / User Interfaces / Thick Clients

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the application use a user interface component library?

Procedure;

Check for user interface component library code dependencies in the user interface code.

Example:

None.

Page 171

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1032

Validate all input fields.
Rationale:

Input validation contributes to data integrity, security, and enhances the end-user experience by detecting errors and
preventing problems as close as possible to the point of data entry.

Input validation can be simplified by reducing the number of free form text fields and using selection mechanisms
such as radio buttons, option boxes, pull down lists, maps, calendars, clocks, slider bars, and other numeric
validation entries.

User input data validation should not be the sole mechanism to ensure data integrity. For example, web applications
client -side data validation may be done with javascript, but the user (or an intermediary) may modify or remove the

javascript without the knowledge of the server-side web application; therefore it is important to validate input data at
both the client-side and server-side.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity
NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Policies and Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate
Input

NESI / Part 5: Developer Guidance / Software Security / Policies and Processes for Implementing Software Security
/ Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction

Evaluation Criteria:
1) Test:

Are all input fields, including non-freeform fields, validated to ensure they can be properly handled across data
interfaces: normalized, mediated, and rendered?

Page 172

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance
Procedure:

Review the code that receives the input fields' data and verify that the inputs are validated against expected interfaces'
data models.
Example:

Sample validation techniques:

« validating input data against a white-list of approved values

» validating input data against a black-list of non-allowed values

» validating input data against a regular expression for proper format

» validating input data to not allow inappropriate execution of commands such as used in SQL-Injections attacks

Sample validation tools:

» IBM WebSphere Voice Toolkit VoiceXML validator tool
e Cisco Systems Audium VoiceXML validation for J2EE

Page 173

Part 5: Developer Guidance

G1043

Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

Rationale:

Formatting information will be located in one location instead of scattered throughout each individual Web page of a
Web site. This makes a Web site more maintainable.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
|/ Style Sheets

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Style Sheets

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Style Sheets

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are any formatting attributes used in any of the HTML tags?

Procedure;

Search all Web pages and make sure there are no formatting attributes such as align, color, font, or size in any tags.

Example:

None.

Page 174

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1044

Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973 (as
amended) when developing software user interfaces.

Rationale:

Applicable software must comply with Federal standards to enable better application use for those with disabilities.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Designing User Interfaces for Accessibility

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction /
Designing User Interfaces for Accessibility

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Designing User Interfaces for Accessibility

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Designing User Interfaces for
Accessibility

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:
Do all Web documents (e.g. HTML, JSP, ASP, and CSS) follow the Disability Act guidelines?
Procedure:
Check to make sure all Web documents follow the guidelines.

Use available validation tools to validate Section 508 accessibility and WAI accessibility. Go to http://
www.contentquality.com/Default.asp to validate the page.

Example:

None.

Page 175

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275
http://www.contentquality.com/Default.asp
http://www.contentquality.com/Default.asp

Part 5: Developer Guidance

G1045

Separate XML data presentation metadata from data values.
Rationale:

XML documents should be free of any presentation information and should only contain data. Separating
presentation data from content (for example by representing presentation through the use of using Cascading
Style Sheets and/or XSL transforms) allows multiple presentations for the same content data.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / XML / XML Semantics / XML
Schema Documents / Defining XML Schemas

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / XML / XML Semantics / XML
Schema Documents / Defining XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / XML Semantics / XML Schema Documents / Defining XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / XML Semantics / XML Schema Documents / Defining XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / XML Semantics / XML Schema Documents / Defining XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - Registered / XML Semantics / XML Schema Documents / Defining XML Schemas

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - COI Data Models / XML Semantics / XML Schema Documents / Defining XML Schemas
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / XML Semantics /
XML Schema Documents / Defining XML Schemas

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / XML / XML Semantics / XML Schema Documents / Defining XML Schemas

NESI / Part 5: Developer Guidance / Data / XML / XML Semantics / XML Schema Documents / Defining XML
Schemas

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ XML Rendering

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / XML Rendering

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / XML Rendering

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:
Is presentation information in XML documents?
Procedure:
Does the XML document contain only data?

If the XML document is not an document, does it contain presentation information?

Page 176

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1385
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance
Example:

None.

Page 177

Part 5: Developer Guidance

G1050

In Active Server Pages (Classic ASP), isolate the presentation tier from the middle tier using Component Object
Model (COM) objects.

Rationale:

Using Component Object Model (COM) to separate logic code from presentation code in Classic ASP aids
maintenance of both the presentation code and the logic code. It improves code readability and allows for
separation of duties between those developing middle tier code and those developing presentation tier code.
Separation of duties creates a formal interface, which provides input validation (if done right). Adding more
sophisticated security controls creates a hardened boundary that further mitigates potential vulnerabilities. Examples
include secured user environments and prevention of compromising interactions with unauthorized information or
service provider sites masquerading as rendering instructions (i.e., cross-site scripting or XSS attacks).

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients

/ Active Server Pages (Classic ASP)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Active Server Pages (Classic ASP)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Active Server Pages (Classic ASP)

Evaluation Criteria:
1) Test:

Is all the middle tier code isolated from the presentation tier in Classic ASP via COM?

Procedure;

Verify that Classic ASP files do not contain middle-tier code. Instead, this code should be in COM objects referenced
from the Classic ASP.

Example:

None.

Page 178

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1052

Use the code-behind feature in ASP.NET to separate presentation code from the business logic.
Rationale:

Separating presentation code from business logic allows the developers and content designers to work
independently. It also makes the code more maintainable because changes in the design elements or business
elements do not affect each other.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ Active Server Pages for .NET (ASP.NET)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Active Server Pages for .NET (ASP.NET)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Active Server Pages for .NET
(ASP.NET)

Evaluation Criteria:
1) Test:

Is there code in ASP pages?

Procedure;

Check to make sure that ASP files have the code-behind attribute in the first line instead of embedded C# code in the
ASP.

Example:

None.

Page 179

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1053

Do not embed HTML code in any code-behind code used by aspx pages.
Rationale:

Intermixing VB or C# or C++ with presentation code (HTML) makes the code unnecessarily difficult to maintain by
both the developer and designer. This is similar in concept to Java's not embedding HTML code in servlets.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ Active Server Pages for .NET (ASP.NET)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Active Server Pages for .NET (ASP.NET)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Active Server Pages for .NET
(ASP.NET)

Evaluation Criteria:
1) Test:
Check for HTML code in code-behind code.

Procedure:
Check the code-behind file (. aspx. vb for example) for any HTML tags.

Example:

None.

Page 180

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1056

Specify a versioning policy for .NET assemblies.
Rationale:

Versioning assemblies and configuring dependent assemblies allow the Common Language Runtime (CLR) to
load the proper assemblies at runtime for an application. This insulates the application from configuration changes.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ Active Server Pages for .NET (ASP.NET)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Active Server Pages for .NET (ASP.NET)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Active Server Pages for .NET
(ASP.NET)

Evaluation Criteria:
1) Test:
Does the application assembly have versioning information?
Procedure:
Check the application assembly manifest for versioning information.
Use the .NET configuration tool to check for versioning policy and versioning information.

Example:
NoneAdded period after "None" in EC Example.

Page 181

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1058

Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.
Rationale:

Separating data-layer code from presentation-layer code provides the ability to base multiple views on the same
model. This is especially important in the enterprise model because often, the user interface varies with the device
(browser, mobile phone, thick client, etc.).

Isolating different layers allows changes to occur in each layer without impacting other layers. For instance, if the
data layer (model) decides to switch databases, the changes are isolated to the data layer and do not affect the view
layer or controller layer.

Lastly, because MVC architecture enforces separation between presentation, processing, and data layer, this allows
functionality to be loosely coupled and therefore more suited for reuse.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ Active Server Pages (Classic ASP)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Active Server Pages (Classic ASP)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Active Server Pages (Classic ASP)
NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ JavaServer Pages (JSP)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / JavaServer Pages (JSP)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / JavaServer Pages (JSP)

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ Active Server Pages for .NET (ASP.NET)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Active Server Pages for .NET (ASP.NET)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Active Server Pages for .NET
(ASP.NET)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the application enforce clear separation between data layer (model), presentation layer (view), and middle/
business layer (controller)?

Procedure:

Ensure that all page renderings use a Model-View-Controller (MVC) pattern using, for example, JavaServer Pages
(JSPs) and servlets or ASP.NET pages and Code Behind files.

Example:

None.

Page 182

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1060

Encapsulate Java code in JavaServer Pages Standard Tag Libraries (JSTL) when using the code in JavaServer
Pages (JSP).

Rationale:

Separating code from presentation allows developers and designers to work independently. It makes the code
reusable and more maintainable because it is defined in a tag library.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ JavaServer Pages (JSP)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / JavaServer Pages (JSP)

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / JavaServer Pages (JSP)

Evaluation Criteria:
1) Test:

Do the JSP pages use JavaServer Page Standard Tag Libraries (JSTL) to encapsulate Java code?

Procedure;

Verify that Java Code is encapsulated in JavaServer Page Tag Libraries within JSPs.

Example:

None.

Page 183

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1071

Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).
Rationale:

Increase portability and maintainability. Many of the newer connection mechanisms are vendor-neutral. Use these
instead of isolation design patterns or vendor-specific connection mechanisms.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Technologies and
Standards for Implementing Software Security / INDI Security

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Technologies and
Standards for Implementing Software Security / INDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Technologies and Standards
for Implementing Software Security / JNDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Technologies and Standards for Implementing Software Security / JNDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Controls / Technologies
and Standards for Implementing Software Security / INDI Security

NESI / Part 5: Developer Guidance / Software Security / Technologies and Standards for Implementing Software
Security / JINDI Security

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Is the connection mechanism vendor-neutral?

Procedure;

Examine the source code for vendor-specific imports or includes. Use only standard APIs.

Example:

None.

Page 184

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1426
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1073

Isolate vendor extensions to enterprise service interfaces.
Rationale:

Vendor extensions are convenient but help create "vendor lock” and reduce vendor neutrality and migration. It is
best to avoid these extensions altogether. If that is not possible, then isolate them in an adapter or a wrapper-like
construct.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are vendor extensions to enterprise services used?

Procedure;

Make sure that no vendor-specific code is included or imported except as part of an adapter or wrapper.

Example:

None.

Page 185

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1078

Document the use of non-Java EE-defined deployment descriptors.
Rationale:

Deployment descriptors that are not defined by the J2EE specification are not portable between application
servers. For example, BEA WebLogic has a vendor-specific deployment descriptor called webl ogi c- ej b-
j ar.xm and JBoss has a vendor specific deployment descriptor called j boss-j ar. xm .

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Java EE Deployment Descriptors

NESI / Part 5: Developer Guidance / Middleware / Java EE Deployment Descriptors

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Are all the XML files that are not part of the Java EE specification identified in a delivered document?

Procedure;

Search all XML documents in the META-INF and WEB-INF directories and identify any XML files that are not defined
by Java EE. These files should be in a README or other delivered file that describes their purpose:

Example:
Web application VEB- | NF/ web. xm
EJB JAR META- | NF/ ej b-j ar. xm
J2EE Connector MVETA- | NF/ ra. xm
Client application META- | NF/ appl i cation-client.xm
Enterprise application VETA- | NF/ appl i cati on. xm

Page 186

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1079

Use deployment descriptors to isolate configuration data for Java EE applications.
Rationale:

Do not hard-code tailorable data into source files. The standard location for tailorable data for Java EE applications
is in deployment descriptors. Developers should not "reinvent the wheel" by creating a non-standard mechanism for
retrieving configurable data. Make tailorable data accessible through application contexts provided by the application
container (Java EE application server).

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Technologies and
Standards for Implementing Software Security / INDI Security

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Technologies and
Standards for Implementing Software Security / INDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Technologies and Standards
for Implementing Software Security / JNDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Technologies and Standards for Implementing Software Security / JNDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Controls / Technologies
and Standards for Implementing Software Security / INDI Security

NESI / Part 5: Developer Guidance / Software Security / Technologies and Standards for Implementing Software
Security / JINDI Security

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Java EE Deployment Descriptors

NESI / Part 5: Developer Guidance / Middleware / Java EE Deployment Descriptors

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Is tailorable data configured using deployment descriptors?

Procedure:

Check the deployment descriptor for instances of tailorable data.

Example:

Name-value pairs such as environment variables configured using resource-env-ref elements.

JNDI locations configured using resource-ref elements.

Page 187

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1426
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1080

Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web service
environments.

Rationale:

Most of the COTS Web service products have already met this requirement. This is intended to cause a rejection of
the non-standard Web server.

The WS-I Basic Profile specification is available from the Web Services Interoperability Organization Web site: WS-I
Org Basic Profile.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Web Services
Compliance

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Web Services
Compliance

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Web Services Compliance

NESI / Part 5: Developer Guidance / Middleware / Web Services / Web Services Compliance

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Is the Web service product WS-I Basic Profile specification compliant?

Procedure:

Identify the Web service product being used, and verify through a literature search that it is WS-1 Basic Profile
specification compliant.

Example:

None.

Page 188

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1082

Use the document-literal style for all data transferred using SOAP where the document uses the World Wide Web
Consortium (W3C) Document Object Model (DOM).

Rationale:

The document-literal style requires defining the input and output parameters to a Web service as documents

that follow the W3C Document Object Model (DOM). The DOM acts as a contract between the producer and the
consumer of the Web service that is formal, well-defined, and rigorous. Validating the DOM against an XML Schema
Definition (XSD) can help resolve discrepancies in the interface.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / SOAP

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / SOAP

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / SOAP

NESI / Part 5: Developer Guidance / Middleware / Web Services / SOAP

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Scalability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Web Services
Compliance

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Web Services
Compliance

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Web Services Compliance

NESI / Part 5: Developer Guidance / Middleware / Web Services / Web Services Compliance

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the WSDL define input, output, or returned parameters as Documents that follow the W3C Document Object
Model (DOM)?

Procedure:

Review all WSDL files used to describe a Web service, and make sure they only pass documents. Document types
should be xsd: anyType.

Example:

None

Page 189

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1270
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1083

Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM) documents as
strings.

Rationale:

Because of the relative simplicity of converting an XML document to a string, it is easy to pass an entire document
as a string rather than as an XML document. This can cause problems if the document contains tags that are similar
to the tags used in the SOAP. Passing it as an XML document ensures that the document is treated as a single
entity.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Web Services
Compliance

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Web Services
Compliance

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Web Services Compliance

NESI / Part 5: Developer Guidance / Middleware / Web Services / Web Services Compliance

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the WSDL define input, output, or returned parameters as strings?

Procedure;

Review all the WSDL files used to describe a Web service and make sure that they only pass documents, not strings.
Document types should be xsd: anyType.

Example:

None

Page 190

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1085

Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD Programs.
Rationale:

A registered namespace permits unique identification and categorization of a Program which avoids name
collisions and conflicts. The DoD Net-Centric Data Strategy requires storing data products in shared spaces to
provide access to all authorized users and tagging these data products with metadata to enable discovery of data by
authorized users. The use of a unique registered namespace provides an absolute identifier to products associated
with a particular product and is an XSD schema requirement.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / XML / XML Semantics / XML
Schema Documents / Using XML Namespaces

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / XML / XML Semantics / XML
Schema Documents / Using XML Namespaces

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / XML Semantics / XML Schema Documents / Using XML Namespaces

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / XML Semantics / XML Schema Documents / Using XML Namespaces

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / XML Semantics / XML Schema Documents / Using XML Namespaces

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - Registered / XML Semantics / XML Schema Documents / Using XML Namespaces
NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking

Sheet / Service Understandability - COI Data Models / XML Semantics / XML Schema Documents / Using XML
Namespaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / XML Semantics /
XML Schema Documents / Using XML Namespaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / XML / XML Semantics / XML Schema Documents / Using XML Namespaces

NESI / Part 5: Developer Guidance / Data / XML / XML Semantics / XML Schema Documents / Using XML
Namespaces

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / WSDL

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / WSDL

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / WSDL

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / WSDL

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Registered / WSDL

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / WSDL

NESI / Part 5: Developer Guidance / Middleware / Web Services / WSDL

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the Program have an assigned namespace in the DoD Metadata Registry?
Page 191

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1385
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1384
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

Procedure:
Check the DoD Metadata Registry to determine whether program is associated with COI(s).

Example:

None

Page 192

Part 5: Developer Guidance

G1087

Validate all Web Services Definition Language (WSDL) files that describe Web services.
Rationale:

Manually editing a WSDL file is error-prone, work-intensive, and hard to maintain. However, if the user wants to do
it, there is no way to detect a manually edited file from one that was auto generated. The important thing is not how
the WSDL file is generated but rather that the WSDL file is valid. It must be validated with a WSDL validator.

Note: Not all WSDL files that are generated and valid are necessarily interoperable.
Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Insulation and Structure

NESI / Part 5: Developer Guidance / Middleware / Web Services / Insulation and Structure

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / WSDL

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / WSDL

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / WSDL

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / WSDL

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Registered / WSDL

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / WSDL

NESI / Part 5: Developer Guidance / Middleware / Web Services / WSDL

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services

NESI / Part 5: Developer Guidance / Middleware / Web Services

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test:
Can the WSDL file be validated?

Procedure:

Download a validation tool and test WSDL files.

Example:

Sample tools:

Page 193

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1384
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

WS-I Organization: http://www.ws-i.org/deliverables/workinggroup.aspx?
wg=testingtools

Eclipse: http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html|?
rev=1.20

XMethods: http://xmethods.net/ve2/Tools.po

Pocket Soap: http://pocketsoap.com/wsdl/

Page 194

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://xmethods.net/ve2/Tools.po
http://pocketsoap.com/wsdl/

Part 5: Developer Guidance

G1088

Use isolation design patterns to define system functionality that manipulates Web services.
Rationale:

Insulating SOAP Web-service manipulation using standard abstraction patterns such as a proxy or adapter
insulates the software system from changes in the Web service interface and promotes maintainability.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Insulation and Structure

NESI / Part 5: Developer Guidance / Middleware / Web Services / Insulation and Structure

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / SOAP

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / SOAP
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / SOAP

NESI / Part 5: Developer Guidance / Middleware / Web Services / SOAP

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Scalability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services

NESI / Part 5: Developer Guidance / Middleware / Web Services

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are Web service calls isolated in a single adapter or proxy object?

Procedure:

Check to see if all Web service calls are isolated to a single adapter or proxy object.

Example:

None

2) Test:

Are Web service calls inside of the application code?

Procedure:

Check for proliferation of Web service calls inside an application.

Page 195

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1270
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance
Example:

None

3) Test:

Are SOAP-client calls inside the application code?

Procedure:

Check to see if SOAP-client code is proliferated inside the application code?

Example:

None

Page 196

Part 5: Developer Guidance

G1090

Do not hard-code a Web service's endpoint.
Rationale:

An endpoint is the Uniform Resource Locator (URL) or location of the Web service on the Internet. A major
benefit of Web services is the ability to relocate a Web service to another location or dynamically discover and

use a Web service using registry facilities. Hard-coding the URL of the Web service can cause maintenance and
portability problems. A better solution to hard-coded endpoints is to provide endpoint metadata that is configurable
at deployment or during runtime of the service.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Insulation and Structure

NESI / Part 5: Developer Guidance / Middleware / Web Services / Insulation and Structure

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services

NESI / Part 5: Developer Guidance / Middleware / Web Services

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are there any hard-coded URLs in the client-side code?

Procedure;

Parse the client code looking for hard-coded URLs.

Example:

None.

Page 197

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1093

Implement exception handlers for SOAP-based Web services.
Rationale:

SOAP exceptions result when there are connectivity problems or violations in the SOAP protocol between the client
and the server.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / SOAP

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / SOAP
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / SOAP

NESI / Part 5: Developer Guidance / Middleware / Web Services / SOAP

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the Web application client have exception handlers for SOAPExcept i ons.

Procedure;

Check to see that the Web application client has an exception block specifically for SOAPExcept i on.

Example:

None

2) Test:

Does the Web application client test the SOAP response for a fault?

Procedure:

Verify the Web application client handles a true value returned from the r esponse. gener at edFaul t .

Example:

None

Page 198

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1094

Catch all exceptions for application code exposed as a Web service.
Rationale:

Any exception can reveal system internals and thus compromise security. Also, internal exceptions are not user
friendly.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Handle Exceptions
NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Handle Exceptions

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Handle Exceptions

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Handle Exceptions
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Policies and Processes for Implementing Software Security / Secure Coding and Implementation Practices / Handle
Exceptions

NESI / Part 5: Developer Guidance / Software Security / Policies and Processes for Implementing Software Security
/ Secure Coding and Implementation Practices / Handle Exceptions

Evaluation Criteria:
1) Test:

Does each exposed Web method catch all possible exceptions and re-throw a declared application exception?

Procedure;

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

2) Test:

Does each exposed Web method catch all possible runtime exceptions and re-throw a declared application runtime
exception?

Procedure:

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

Page 199

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1095

Use W3C fault codes for all SOAP faults.
Rationale:

Having predefined and accepted fault codes allows consumers to handle SOAP faults appropriately without prior
knowledge of custom fault codes.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / SOAP

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / SOAP
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / SOAP

NESI / Part 5: Developer Guidance / Middleware / Web Services / SOAP

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the Web application throw fault codes from the accepted list of fault codes?

Procedure;

Verify that each fault code thrown by the Web application is from the accepted list of SOAP fault codes defined by the
W3C.

Example:

None

Page 200

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1118

Localize CORBA vendor-specific source code into separate modules.
Rationale:

The general guidance is to minimize CORBA vendor-specific source code, while recognizing that vendor-specific
features are necessary in certain circumstances. However, isolating vendor-specific code reduces maintenance
effort.

Vendor capabilities tend to change more rapidly than CORBA-standard specifications. Experience shows that
vendor updates frequently require modification to application source code, due to changing vendor interface
conventions. These modifications impose vendor-version-specific constraints on the application, thereby
complicating maintenance.

Example
Encapsulating CORBA ORB operations

The following examples show how to encapsulate binding operations for a C++ ORB, and naming service
operations for a Java ORB.

C++ ORB binder template

The code below shows a sample template for binding to the C++ ORB. IONA's ORBIX was used in this
example.

/*
Server Bi nder. h (Tenpl ate)
this is a generic binder to ORBI X

*/

#i f ndef _BI NDER_H_
#define _BlI NDER H_
#i f ndef | OSTREAM H
#defi ne | OSTREAM H
#i ncl ude <i ostream h>
#endi f
#i f ndef STDLIB_H
#define STDLIB_H
#i ncl ude <stdlib. h>
#endi f
tenpl ate <cl ass SERVERNAME, class VARPTR>
cl ass Bi nder
{ private:
char* server Naneg;
publi c:
Bi nder (char* svNane): server Name(svNane) {};
~Bi nder () {};
int bind(VARPTR* p)
{ int attenpts = 0, success = 0;
int maxtries = 5, retval = 0;
while ((attenpts < maxtries)
&& (!success)
)
{ ++attenpts;
cout << "Binding to server, attenpt "
<< attenpts
<< endl;
try
{ (*p) = SERVERNAME: : _bind();
cout << "Bound to server"
<< endl;
success = retval = 1;
} /1 End try
catch (CORBA: : Syst emExcepti on &systenException)
{ cout << "SystenException, ServerBinder:: bind"
<< endl
<< syst enkExcepti on;

Page 201

Part 5: Developer Guidance

success = 1,
retval = 0;
} // End catch SystenException
catch (...)
{ cout << "unknown Exception, ServerBi nder::bind"
<< endl;
success = 1,
retval = 0;
} // End catch all
} //end while
return retval;
} //end bind
} //end Binder
#endi f

Ada ORB binder template for C++

The code below shows a C++ template for binding to an Ada ORB. ORBexpress was used in this example.

/*
ada_bi nder. h (Tenpl at e)
this is a generic binder to ORBExpress

*/

#i fndef _ADA BI NDER H_
#define _ADA BI NDER H_
#i f ndef | OSTREAM H
#define | OSTREAM H

#i ncl ude <i ostream h>
#endi f

#i f ndef STDLIB_H
#define STDLIB H

#i nclude <stdlib. h>
#endi f

tenpl ate <cl ass SERVERNAME, cl ass VARPTR >
cl ass Ada_Bi nder

{ private:
char* adal or Stri ng;
publi c:
Ada_Bi nder

(char* iorString)

: adalorString (iorString)
{}
~Ada_Bi nder (){};
int bi ndToAda(VARPTR* p)

{ int attenpts = 0, success = 0;
int maxtries = 5, retval = 0;
while ((attenpts < maxtries)
&& (!success)
)
{ ++attenpts;
cout << "Binding to server, attenpt
<< attenpts
<< endl;
try
{ cout <<"adalorString:"
<< endl
<< adal or Stri ng
<< endl;
(*p) = SERVERNAME: : _bi nd(adal or String);

//can't use string_to_object in this version

/lit kills the ada I OR

I CORBA: : Obj ect _ptr nyptr

CORBA: : Or bi x. string_to_object
(adalorString);

/1 (*p) = SERVERNAME: : _narrow(nyptr);
cout << "Bound to server" << endl;
success = retval = 1;
} // End try

catch (CORBA: : Syst enExcepti on& syst enExcepti on)
{ cout << "SystenException,

<< "AdaSer ver Bi nder : : bi nd"

<< endl

Page 202

Part 5: Developer Guidance

<< syst enkExcepti on;
success = 1,

retval = 0;
} /1 End SystenException
catch (...)

{ cout << "Unknown Excepti on,
<< " AdaServer Bi nder: : bi nd"

<< endl ;
success = 1;
retval = 0;

} // End catch all
} /1l end while
return retval;
} // end bind
} /1 end ADA_Bi nder
#endi f

Example
Naming service operations for a Java ORB
Java helper class

This example is a helper class, JavaNamingHelper.java, that encapsulates CORBA naming service
operations for all services to use. We used Java JDK 1.4 ORB to create this example.

import java.util.*;

i nport org.ong. CORBA. *;

i mport org.ong. CORBA. ORB. *;

i mport org.ong. CORBA 2 3. ORB. *;

i mport org.ong. CosNam ng. *;

i mport org.ong. CosNam ng. Nam ngCont ext . *;

i mport org.ong. CosNam ng. Nam ngCont ext Package. *;
i mport CBRNSensors. JSLSCAD. *;

public class JavaNam ngHel per

{ static Nam ngContext nameSvc = null;

static org. ong. CORBA. Obj ect objref = null;
static JSLSCADSensor myCBRNSensor = null;
static org. ong. CORBA. Obj ect nmyobj = null;
publ i ¢ JavaNani ngHel per ()

{

}

private static void showNanm ngCont ext
(org.ong. CORBA. ORB nyorb)

public static Nam ngContext getNam ngSvc
(org.ong. CORBA. ORB | cl orb,
String naneSvcNane
)
{ Nam ngCont ext |cl NaneSvc = null;
try
{ org.ong. CORBA. Obj ect nanmeSvcj
= lclorb.resolve_initial_references
("NaneService");
/1 . . . other business |ogic renpved
/1 for brevity
} /] End try
cat ch(org. onmg. CORBA. COW FAI LURE cf)
{ . . . Il error code goes here
} /1 End cstch
catch (org. ong. CORBA. ORBPackage. | nval i dNane i nval i dNane)
{ . . . I/ error code goes here
} /1 End catch
catch (SystenException systenException)
{ . . ./l error code goes here
}
} /1 End get Nami ngSvc
public static org.ong. CORBA. (bj ect get Obj FronNaneSvc
(org.ong. CORBA. ORB nyor b,
String target Sensor Name
)

{ . . . Il business logic goes here

Page 203

Part 5: Developer Guidance

} //end get Qbj Fr omNaneSvc
public static int setObj 2NameSvc
(org.ong. CORBA. ORB nyor b,
BasesSensor nySensor,
String target Sensor Name
)
{. . . I/ business |ogic goes here
}//end set Cbj 2NaneSvc
}; //end class JavaNam ngHel per

Java server implementation

The code below is a sample Java server implementation that uses the naming service helper class.

i nport java.io.*;

inport java.util.*;

i nport org.ong. CORBA. *;

i nport org.ong. CORBA. ORB. *;

i nport org.ong. CORBA 2_3. ORB. *;

i nport org.ong. Portabl eServer. *;

i nport org.ong. CosNani ng. *;

i nport org.ong. CosNani ng. Nanm ngCont ext . *;

i nport org.ong. CosNani ng. Nanm ngCont ext Package. *;
cl ass MyServer

{ public static Properties props;
public static ORB nyorb = null;
public static Nam ngContext naneSvc = null;
public static RootSensor nySensor = null;
public static String propertyFilePath = null;
public static final String MY_SENSOR NAME = " MYSENSCR';
static public void main(String[] args)

{ // handl e argunents
Systemout. println(" CORBA Server starting...\n");
try
{ // Initialize the ORB.
nyorb = ORB.init(args, props);
/linstantiate servant and create ref
PQOA r oot POA
= PQOAHel per. narrow myorb. resolve_initial _references
(" Root POA");
// rest of initialization code goes here

} // End try
catch (org. ong. CORBA. ORBPackage. | nval i dNanme i nval i dNanme)
{ . . . Ilerror code goes here

} // End invalidNane
/] other exception types to catch go here
catch (SystenException systenException)
{ Systemerr.println (systenException);
} // End systenException
/1 nam ng service hookup
JavaNam ngHel per . set Cbj 2NaneSvc
(myorb, mySensor,
MY_SENSOR_NAVE
DE
try
{ Systemout.println(" Ready to service requests\n");
nmyorb. run();
} // End try
cat ch(Syst enExcepti on systenException)
{ Systemerr.println (systenException);
} // End catch systenException
} // End static bl ock
} // End MyServer

Java client implementation

The code below is a sample client implementation that uses the naming service helper class.
Referenced By:

Page 204

Part 5: Developer Guidance

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:

1) Test:
Are any non-CORBA compliant CORBA:: objects declared or defined in the module?

Procedure:

Review the code for a service that can be used to obtain configuration.

Example:

None

2) Test:

Does the module contain vendor names anywhere in code text?

Procedure;

Review the code looking for a service that can be used to obtain configuration.

Example:

None

Page 205

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1119

Isolate user-modifiable configuration parameters from the CORBA application source code.
Rationale:

Configuration parameters control the behavior of the CORBA ORB service environment and client/service processes
during startup, execution, and termination. This parameterization allows execution-time control modification without
having to rebuild, reinstall, or redeploy.

Configuration defines the state of the client-and-service environment throughout the lifetime of the processes
involved. This relates to considerations such as the allocation of threading and resources, POA policies, the
instantiation of servants and their invocations, failure and security behavior, connection management, quality of
service prioritization, and so forth. The point is that CORBA provides an extremely complex but flexible environment
for distributed computing interaction. Consequently, the designer requires flexible guidance to handle this option-rich
environment.

Configuration processes and their related parameters fall into two categories. The first involves configuration
matters, which are defined to be perpetually static by the system architecture. The second involves matters that are
intended to be modifiable by users.

The first category, immutable configuration settings, relates to fundamental underlying assumptions that are
foundational for the implementation. These are matters for which no user modification is ever intended as it would
lead to unspecified behavior. Consider the example of a service implementation that is programmed to be single
threaded. In this case, multi-threading controls are irrelevant and multiple instantiation would lead to dangerous
confusion. For immutable configuration parameters, localized and well-commented implementation in the application
source code is appropriate.

For user-modifiable configuration settings, there are two further by-design divisions. The first involves configuration
settings that are intended to be accessible by distributed processes. The second involves host-specific settings
which relate to resources locally available, for which remote access is not desired. These are discussed in the
related sublevel guidance

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services /| CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Are configuration parameters isolated from CORBA application code?

Procedure:

Check source code for configurable parameters to verify that such parameters are not hard-coded within the code and
are configurable within configuration files.

Example:

None.

Page 206

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1121

Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.
Rationale:

The purpose of the IDL auto-generated stub and skeleton files is to provide a source code facility/mechanism

for the developer in a specific language to use the IDL-described object interface in that specific language. The
internal content of these files changes with the application's IDL modification, with IDL compiler-environment
configuration settings, and with vendor-product compiler and ORB upgrades. By design, these files are not intended
to be modified by the application developer. Developer modification of any auto-generated stub or skeleton file will
typically lead to very severe maintenance hazards and failed application rebuild results.

The stub files describe the language source-code interface from the client side. Their use involves including the
client stub header in the application's call invocation code.

The skeleton files describe the language source code interface from the service implementation side. Their use
involves including the skeleton header in the application's operator implementation code. Their use also requires
developer modification of a renamed clone of the auto-generated skeleton body file. These techniques are described
in every ORB vendor's programming reference manuals.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Is any application code contained in the auto-generated code?

Procedure:

Inspect the auto-generated file creation/modification dates to verify that no tampering occurred after the IDL
compilation step in the build process.

Example:

The following examples are all based upon a single CORBA IDL interface.

MyldlInterface.idl

interface MyldlInterface
{
readonly attribute string version;
void stop();
void start();
string error();
}; /1 End MyldlInterface

ORBEXxpress compiler

The ORBExpress IDL compiler generates these files:

Page 207

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance
e nyldlInterface. h - Client-side stub header
« nyldlInterface. cxx - Client-side stub implementation
* MldlInterface_s. h - Abstract servant header
« MldlInterface_s. cxx - Abstract servant implementation
« MldlInterface_inpl.h - Serverimplementation header

« MldlInterface_inpl.cxx - Serverimplementation implementation

Note: The only files that should be edited are Myl dl I nterface_i npl . hand Myl dl I nterface_i npl.cxx.
The IDL compiler checks for the existence of the implementation (i.e. _impl) files and will not overwrite them.

Myldlinterface_impl.cxx

/] Cenerated for interface MyldlInterface
/1 in nyldlInterface.idl
#i nclude "Myl dl I nterface_inpl.h"
Myl dl Interface_inpl:: MldlInterface_inpl
(Portabl eServer:: POA* oe_poa,
const char* oe_object_id
) : POA_M/ldlInterface
(oe_object_id,
oe_poa
)
{ . . . // TODO add inplenentation code here
} // end constructor
M/l dl I nterface_inpl:: Mldllnterface_inpl
(const MyldlInterface_inpl& obj)
POA Wi dl I nterface(obj)
{ . . . // TODO add inplenentation code here
} /1 End constructor
Myl dl I nterface_inpl::~MldlInterface_inpl ()
{ . . . // TODO add inplenentation code here
} // End destructor
CORBA: : Char* Myl dlInterface_inpl::version
(CORBA: : Environment& _env)
{ return CORBA: :string_dup(_version);
} // End version
void MyldlInterface_inpl::stop
(CORBA: : Environnment& _env)
{ . . . // TODO add inplenentation code here
} // End stop
void MyldlInterface_inpl::start
(CORBA: : Environnment& _env)
{ . . . // TODO add inplenentation code here
} // End start
CORBA: : Char* Myl dl Interface_inpl::error
(CORBA: : Environment& _env)
{ CORBA::Char* result;
// TO DO add inpl enentati on code here
return result;
} // End error

Java JDK compiler
The Java JDK IDL compiler generates these files:

* MldlInterface.java

« MldlInterfaceHel per.java

« MldlInterfaceHol der.java

« MildlInterfaceOperations.java
e MldlInterfacePOA java

e MildlInterfaceStub.java
MyldlinterfacePOA.java

Page 208

Part 5: Developer Guidance

/**
* MyldlInterfacePOA. java .
* CGenerated by the |DL-to-Java conpil er
* (portable), version "3.1"
* fromnyldlInterface.idl
*/
public abstract class MyldlInterfacePOA
ext ends org. ong. Port abl eSer ver. Ser vant
i mpl enents Myl dl I nterfaceOperations,
org. ong. CORBA. port abl e. | nvokeHandl| er
{ . . . Il rest of the auto-generated code renoved for brevity
} /1 End MyldlInterfacePOA

Myldlinterfacelmpl.java

package nyldl | npl;
i mport org.ong. CORBA. *;
i nport org. ong. CORBA. ORB. *;
i mport org.ong. CORBA 2_3. ORB. *;
i nport org.onyg. Portabl eServer. *;
public class MldlInterfacel npl
extends Ml dlInterfacePOA
{
private String strVersion;
private String errString;
public String version ()
{ . . . I/l inplenentation code goes here
return strVersion;
} // End version
public void stop ()
{ . . . I/l inplenentation code goes here
} /1 End stop
public void start ()
{ . . . I/l inplenentation code goes here
} // End start
public String error ()
{. . . I/ inplenentation code goes here
return errString;
} // End error
} // End MyldlInterfacel npl

Page 209

Part 5: Developer Guidance

G1123

Use the Fat Operation Technique in IDL operator invocation.
Rationale:

This reduces the CORBA messaging overhead. The performance cost of network CORBA messaging is determined
by two factors: latency and marshaling rate. Call latency is the minimum cost of sending any message at all. The
marshaling rate is determined by the sizes of sending and receiving parameters and of return values.

In the situation of a large number of objects involving objects that hold a small amount of stat, the call latency

cost far exceeds the marshalling costs. Taking advantage of this reality, the "Fat Operation Technique" involves
constructing structure objects which hold an aggregation of related attributes, and using the resulting structures in
operation invocation parameters and returns. This amounts to transferring a larger amount of information with each
network transaction.

For more information, see "Advanced CORBA Programming with C++" by Henning and Vinoski, 1999 Addison
Wesley, Chapter 22.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Scalability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the IDL contain function calls which have structure objects that are passed as parameters or returned from
operators?

Procedure:

Inspect the IDL file and manually check for parameters or returns using objects defined as structures, and verify that
they are passed from methods also declared in the IDL.

Example:

None

Page 210

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1270
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1125

Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.
Rationale:

These standardized tags or Metacards will be developed, maintained, and placed under configuration as
appropriate and will comply with the DDMS and COI guidance. These include specifications defining the tagging for
security classification and dissemination control. See the DoD Discovery Metadata Specification Web site (http://
metadata.dod.mil/mdr/irssDDMS/) for the current DDMS standards.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Provide Data Management
NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Visibility / Design Tenet: Provide Data Management

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Make Data Visible

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Visibility / Design Tenet: Make Data Visible

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Metadata Registry

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Visibility / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Policy / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Registered / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - Registered / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - COl Data Models / Metadata Registry

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Discovery Services / Metadata Registry

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Metadata Registry

NESI / Part 5: Developer Guidance / Data / Metadata Registry

Evaluation Criteria:
1) Test:

Has the Program documented the profile used for published data assets in accordance with guidance?

Procedure:

Check the DoD Metadata Registry to determine whether the program is associated with COI(s).

Page 211

http://metadata.dod.mil/mdr/irs/DDMS/
http://metadata.dod.mil/mdr/irs/DDMS/
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1257
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1376
https://nesi.spawar.navy.mil/nesix//View/P1257
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1250
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1376
https://nesi.spawar.navy.mil/nesix//View/P1250
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1376
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1383
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1384
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1385
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1402
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance
Example:

None

Page 212

Part 5: Developer Guidance

G1127

Use a UDDI specification that supports publishing discovery services.
Rationale:

UDDI provides a registration for services, and the OASIS UDDI 2.0 specification has become a standard method for
publishing discovery services.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Universal Description,
Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Universal
Description, Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / Universal Description, Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Registered / Universal Description, Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Discovery Services / Universal Description, Discovery,
and Integration (UDDI)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Universal Description, Discovery, and Integration (UDDI)

NESI / Part 5: Developer Guidance / Middleware / Web Services / Universal Description, Discovery, and Integration
(UDDI)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are the Web services registered in a UDDI registry?

Procedure:
Verify the registration in the UDDI registry.

Example:

None

2) Test:
Is the registry UDDI 2.0 or higher?

Procedure:
Determine if the particular UDDI registry is UDDI Version 2.0 or higher.

Example:

None

Page 213

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1384
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1402
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1131

Use standards-based Universal Description, Discovery, and Integration (UDDI) application programming
interfaces (APIs) for all UDDI inquiries.

Rationale:

There is a standard API that uses SOAP messages to communicate with the UDDI registry. To increase
compatibility and portability, use this API exclusively.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Universal Description,
Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Universal
Description, Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / Universal Description, Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Registered / Universal Description, Discovery, and Integration (UDDI)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Discovery Services / Universal Description, Discovery,
and Integration (UDDI)

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Universal Description, Discovery, and Integration (UDDI)

NESI / Part 5: Developer Guidance / Middleware / Web Services / Universal Description, Discovery, and Integration
(UDDI)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test:
Are all the interfaces to the UDDI registry made using the UDDI standard API?

Procedure;

The standard API for UDDI is SOAP based. Requests and responses are passed using documents. Test the traffic
flow between the client and the UDDI registry for messages that are defined in the UDDI specification. Use standard
libraries to send and receive the messages (e.g., JUDDI for Java).

Checking for the use of packages like JUDDI does not require the application to be running.

Example:

The following is an example as provided in the UDDI API reference: http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm# Toc25137712 .

find_binding

The find_binding API call returns a bi ndi ngDet ai | message that contains zero or more binding Template
structures matching the criteria specified in the argument list.
Syntax

Syntax

Page 214

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1384
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1402
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712

Part 5: Developer Guidance

Arguments
serviceKey This uuid_key is used to specify a particular instance of a businessService element in
the registered data. Only bindings in the specific businessService data identified by the
serviceKey passed will be searched.
maxRows This optional integer value allows the requesting program to limit the number of results

returned.

findQualifiers

This optional collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the findQualifiers appendix for more information.

tModelBag This is a list of tModel uuid_key values that represents the technical fingerprint of
a bindingTemplate structure contained within the businessService specified by the
serviceKey value. Only bindingTemplates that contain all of the tModel keys specified will
be returned (logical AND). The order of the keys in the tModel bag is not relevant.
find_binding
Arguments
Returns

This API call returns a bi ndi ngDet ai | message upon success. In the event that no matches were
located for the specified criteria, the bi ndi ngDet ai | structure returned will be empty (i.e., it contains no

bindingTemplate data.) This signifies a zero match result. If no arguments are passed, a zero-match result set
will be returned.

In the event of an overly large number of matches (as determined by each Operator Site), or if the number
of matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If this
occurs, the response message will contain the truncated attribute with the value "true".

Caveats

If any error occurs in processing this API call, a di sposi ti onReport element will be returned to the caller
within a SOAP Fault. The following error number information will be relevant:

E_invalidKeyPassed

This signifies that the uuid_key value passed did not match with any known
serviceKey or tModelKey values. The error structure will signify which condition
occurred first, and the invalid key will be indicated clearly in text.

E_unsupported

This signifies that one of the findQualifier values passed was invalid. The invalid
qualifier will be indicated clearly in text.

Page 215

Part 5: Developer Guidance

G1132

Implement the data tier using commercial off-the-shelf (COTS) relational database management system (RDBMS)
products that implement a Structured Query Language (SQL).

Rationale:

COTS RDBMS products are technically mature, and their capabilities are continually expanding (to include
capabilities such as row-level locking, stored procedures, triggers, and high-level language interfaces). Moreover,
there is a large technical community able to develop and maintain data systems based on these products. It is likely
that a COTS RDBMS will provide many of the data tier capabilities a developer requires.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test:

Is the proposed COTS RDBMS product a readily available and supportable COTS product that implements a
Structured Query Language (SQL)?

Procedure;

Verify that the COTS RDBMS product is widely in use in the DoD environment (e.g., Oracle, SQL Server, or DB2), has
a large support community, and is likely to be supported for the lifecycle of the project.

Example:

None

Page 216

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1141

Base data models on existing data models developed by Communities of Interest (COI).
Rationale:

Using COl-developed data models, or portions thereof, supports interoperability among systems through the use of
common semantics. The use of common semantics aids categorization of data, improving information discovery and
use. COl-developed data models are a useful source of common semantics during new and ongoing data modeling
efforts.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Messaging / Data Distribution Service
(DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Messaging / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric Publish-Subscribe
(DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Communications Readiness / Support Quality of Service (QoS) Standards / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 5: Developer Guidance / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric
Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Provide Data Management
NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Visibility / Design Tenet: Provide Data Management

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Make Data Interoperable

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Make Data Accessible

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Make Data Understandable
NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / Design Tenet: Make Data Understandable

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Be Responsive to User Needs
NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Internationalization Services / Data Modeling

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / Data Modeling

Page 217

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1430
https://nesi.spawar.navy.mil/nesix//View/P1433
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1257
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1376
https://nesi.spawar.navy.mil/nesix//View/P1257
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1256
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1252
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1253
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1253
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1258
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1369
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379

Part 5: Developer Guidance

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - COl Data Models / Data Modeling

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / Data Modeling
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide for Globalization / Internationalization Services / Data Modeling
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Data Modeling

NESI / Part 5: Developer Guidance / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Metadata Registry

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Visibility / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Registered / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Visibility - Discoverable / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Policy / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Registered / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - Registered / Metadata Registry

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - COl Data Models / Metadata Registry

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Discovery Services / Metadata Registry

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Metadata Registry

NESI / Part 5: Developer Guidance / Data / Metadata Registry

Evaluation Criteria:
1) Test:

Are data models based on COIl-developed data models?

Procedure:

Determine whether a COI exists for the technical areas accommodated in the system requirements. Verify that data
models are based on data models the relevant COIs have developed.

Example:

The Universal Core (UCore) data model, Joint Consultation Command and Control Information Exchange Data Model
(JC3IEDM), and the National Information Exchange Model (NIEM) are all data models developed through the use of a
COl process.

Page 218

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1422
https://nesi.spawar.navy.mil/nesix//View/P1369
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1376
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1381
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1382
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1383
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1384
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1385
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1402
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1144

Develop two-level database models: one level captures the conceptual or logical aspects, and the other level
captures the physical aspects.

Rationale:

There are a number of modeling tools available that support entity-relationship diagram (ERD) development.
Developers can use these tools to create conceptual/logical models that are independent of the DBMS in which the
system is implemented and to develop the physical models that are translated directly into data definition language
(DDL), the SQL code used to create the database. Using a conceptual/logical model permits implementation or
reuse of a complex ERD on multiple DBMS products.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Internationalization Services / Data Modeling

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / Data Modeling

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - COI Data Models / Data Modeling

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / Data Modeling
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide for Globalization / Internationalization Services / Data Modeling
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Data Modeling

NESI / Part 5: Developer Guidance / Data / Data Modeling

Evaluation Criteria:
1) Test:

Have separate conceptual/logical and physical models been developed?

Procedure:

Verify the presence of a conceptual/logicalmodel0 and a physical model.

Example:

None.

Page 219

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1369
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1422
https://nesi.spawar.navy.mil/nesix//View/P1369
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1146

Include information in the data model necessary to generate a data dictionary.
Rationale:

A data dictionary is an integral part of every system including databases. A description of each data item and
the units in which the contents are measured are essential. Data modeling tools provide a mechanism for storing
information necessary to produce a data dictionary.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Messaging / Data Distribution Service
(DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Messaging / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric Publish-Subscribe
(DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Communications Readiness / Support Quality of Service (QoS) Standards / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 5: Developer Guidance / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric
Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

Evaluation Criteria:
1) Test:

Does the data model include description information?

Procedure:

Examine the physical data model.

Example:

None.

Page 220

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1430
https://nesi.spawar.navy.mil/nesix//View/P1433
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259

Part 5: Developer Guidance

G1147

Use domain analysis to define the constraints on input data validation.
Rationale:

Domain analysis is an integral part of any data system including databases. Domains describe the set or range of
values that are acceptable for a specific data item. These include, at a minimum the following:

» Data type
* Precision
e Minimum

« Maximum
* Length

These values are used to validate the data.

In the database, the range checking is done via check constraints on the data item. These check constraints are
generated from the physical data model as part of the DDL.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Messaging / Data Distribution Service
(DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Messaging / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric Publish-Subscribe
(DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Communications Readiness / Support Quality of Service (QoS) Standards / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 5: Developer Guidance / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric
Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Internationalization Services / Data Modeling

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / Data Modeling

Page 221

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1430
https://nesi.spawar.navy.mil/nesix//View/P1433
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1369
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379

Part 5: Developer Guidance

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - COl Data Models / Data Modeling

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / Data Modeling
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide for Globalization / Internationalization Services / Data Modeling
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Data Modeling

NESI / Part 5: Developer Guidance / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Policies and Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate
Input

NESI / Part 5: Developer Guidance / Software Security / Policies and Processes for Implementing Software Security
/ Secure Coding and Implementation Practices / Validate Input

Evaluation Criteria:
1) Test:

Does the data model include constraints derived from domain analysis?

Procedure:

Examine the physical data model.

Example:

None.

Page 222

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1422
https://nesi.spawar.navy.mil/nesix//View/P1369
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1148

Normalize data models.
Rationale:

Normalization is a central tenet of relational database theory. It is also part of OOA.

A database should usually be normalized to at least third normal form. Although there are seven normal forms,
normalization beyond third normal form is rarely considered in practical database design.

Objects developed in the absence of data normalization are prone to unnecessary complexity required to keep
multiply copies of data.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Messaging / Data Distribution Service
(DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Messaging / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Data Distribution Service (DDS) /
DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric Publish-Subscribe
(DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Communications Readiness / Support Quality of Service (QoS) Standards / Data Distribution
Service (DDS) / DDS Data-Centric Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain
NESI / Part 5: Developer Guidance / Middleware / Messaging / Data Distribution Service (DDS) / DDS Data-Centric
Publish-Subscribe (DCPS) / Reading/Writing Objects within a DDS Domain

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Data Modeling

NESI / Part 2: Traceability / DISR Service Areas / Internationalization Services / Data Modeling

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Data Exposure Verification Tracking Sheet /
Data Understandability / Data Modeling

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Understandability - COl Data Models / Data Modeling

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Foster Development for Standard Semantics / Data Modeling
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide for Globalization / Internationalization Services / Data Modeling

Page 223

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1430
https://nesi.spawar.navy.mil/nesix//View/P1433
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1369
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1375
https://nesi.spawar.navy.mil/nesix//View/P1379
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1386
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1407
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1422
https://nesi.spawar.navy.mil/nesix//View/P1369

Part 5: Developer Guidance

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Data Modeling

NESI / Part 5: Developer Guidance / Data / Data Modeling

Evaluation Criteria:
1) Test:

Is the database design in third normal form?

Procedure:

Examine the conceptual/logical data model.

Example:

None

Page 224

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1151

Define declarative foreign keys for all relationships between tables to enforce referential integrity.
Rationale:

Foreign Key constraints enforce referential integrity. The principle of referential integrity requires that the foreign key
values of a child table are either null or match exactly those of the primary key in the parent table.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

Evaluation Criteria:
1) Test:

Have foreign-key constraints been incorporated into the database?

Procedure;

Examine the database to determine whether foreign-key constraints have been included in the database creation
scripts and created in the database.

Example:

None

Page 225

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259

Part 5: Developer Guidance

G1153

Separate application, presentation, and data tiers.
Rationale:

Separation into tiers allows for the separate maintenance of each tier as long as the interface between tiers does
not change. It also allows for multiple implementations of a layer to meet different requirements. This supports
technology refresh and certain requirements changes.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Scalability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the program, project or initiative architecture support clear boundaries between application layers, e.g. data,
presentation, and business logic layers.

Procedure;

Examine the program, project or initiative architecture and evaluate the degree to which it supports clear boundaries
between applications layers such as data, and presentation layers. Verify that the system design accommodates a
multi-tier architecture.

Example:

The use of web services is one means of separating the presentation layer from business logic and data layers.

Page 226

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1270
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1154

Use stored procedures for operations that are focused on the insertion and maintenance of data.
Rationale:

Current software design methodologies and architectures call for the implementation of an n-tiered architecture
with business rules in the middle tier and data stored in a separate data tier. When multiple applications access
a common database, however, the rules may be best located at the data-tier level. Otherwise, changes in one
application would have to be coordinated across all applications.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Make Data Trustable
NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

Evaluation Criteria:
1) Test:

Are database triggers used?

Procedure;

Check for stored procedures that are triggered on insertion, deletion, and update events.

Example:

CREATE TRI GGER Per sonCheckAge
AFTER | NSERT OR UPDATE OF age
ON Person
FOR EACH ROW
BEG N
IF (:new age < 0) THEN
RAI SE_APPLI CATI ON_ERROR
(-20000,
'no negative age all owed'

END | F;
END; .

Page 227

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1254
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259

Part 5: Developer Guidance

G1155

Use triggers to enforce referential or data integrity, not to perform complex business logic.
Rationale:

Triggers are fired on events. Current software design methodologies and architectures call for the implementation of
an n-tiered architecture with business rules in the middle tier and data stored in a separate data tier. Implementing
business logic in triggers, as well as in the middle tier, violates this concept.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Data / Design Tenet: Make Data Trustable
NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Relational Database Management
Systems

NESI / Part 2: Traceability / DISR Service Areas / Data Management Services / Data / Relational Database
Management Systems

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Facilitate Computing Infrastructure Knowledge
Management / Data / Relational Database Management Systems

NESI / Part 5: Developer Guidance / Data / Relational Database Management Systems

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

Evaluation Criteria:
1) Test:

Has business logic been incorporated into database triggers?

Procedure;

Examine the database trigger code to determine whether business logic or calls to stored procedures incorporating
business logic have been coded into them.

Example:

None

Page 228

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1244
https://nesi.spawar.navy.mil/nesix//View/P1254
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1366
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1428
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278

Part 5: Developer Guidance

G1190

Use a build tool.
Rationale:

A build tool allows for the encapsulation of building instructions into machine-readable files or sets of files. The
instructions can be successfully and consistently repeated.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the program or project use a build tool?

Procedure;

Identify which build tool the program or project is using.

Example:

None.

Page 229

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1202

Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).
Rationale:

The CORBA Basic Object Adapter (BOA) was the CORBA Version 1 specification for the client-server object
capability. The BOA specification was found to be so incomplete that vendor-specific interpretations were
required for operable implementation. In CORBA Version 2, the Portable Object Adapter (POA) was significantly
more complete and flexible. In the current marketplace, POA implementations are standard and, in quality
implementations, are not vendor-specific. Consequently, using POA eliminates one significant area of vendor-
specific coding.

BOA POA

» Focuses on CORBA server implementations and not » Services for lifecycle management

CORBA object implementations » Abstract layer between ORB and object

* Naming convention issues on server side . Standard, portable interface for
» Tightly coupled to ORB implementation communicating with ORB runtime
» Non-standardized way to connect to ORB * Two servant incarnation styles

» Four activation models for server processes

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Composeability

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:
Does any CORBA application code reference the CORBA: : BOA identifier.

Procedure:

Review the code for the use of the CORBA: : BOA identifier.
Example:

BOA Coding Example

Client Side

The code below shows a C++ CORBA client BOA initialization for the ORBIX ORB. Other ORB vendors may
have different initialization sequences.

‘int mai n

Page 230

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1283
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

(int argc,
char **argv

)

{ MyServer_var MVar;

CORBA: : ORB_ptr nmyOrbPtr
= CORBA: : ORB_init(argc, argv,"Obix");

try

{ // The default is the |ocal host:
MyVar = MyServer:: _bind(": Server Nanme") ;

} /1 End try

catch (CORBA: : Syst emExcepti on &sysEx)

{ cerr << "Unexpected system exception" << endl;
cerr <<&syskEx;
exit(1);

} // End CORBA:: Syst enExcepti on

catch(...)

{ // an error occurred while trying
/1 to bind to the grid object.
cerr << "Bind to object failed" << endl;
cerr << "Unexpected exception " << endl;
exit(1);

} /1l End catch ...

} // End main

Server Side

Use the code below as a model. This example shows a C++ CORBA server BOA init for the ORBIX ORB. For
BOA, other ORBS will have a different initialization sequence.

try
{ MQbject::nmyOrb_
= CORBA: : ORB_init(argc, argv, "Obix");
MyQbj ect : : myboa_
= MObject::nyOb_->BOA init(argc, argv, "Obix_BOA");
} /] End try
catch (CORBA: : SystenException &sysEx)
{ //sone exception handling code
} // End catch
try
{ NoeLogger Cf g: : nyboa_->i npl _i s_ready("M/Servi ceNane",
CORBA: : ORB: : | NFI NI TE_TI MEQUT) ;
} /] End try
catch (CORBA: : Syst enException &sysEx)
{ //exception handling code

}

POA Coding Example

Client Side

This example shows a C++ CORBA client POA init for the ORBIX ORB. For BOA, other ORBS will have a
different initialization sequence.

int main
(int argc,
char **argv

)
{ CORBA::ORB var myOrb = CORBA:: ORB_init(argc, argv);
try
{ CORBA:: bj ect _var obj
= ... I/ however you get the object reference
if(CORBA: :is_nil (obj))
{ cerr << "Ni| object reference" << endl;
t hrow O;
} // End if
} /1 End try
catch (CORBA: : Syst emExcepti on &sysEx)
{ cerr << "Unexpected system exception" << endl;
cerr <<&syskEx;

Page 231

Part 5: Developer Guidance

exit(1);

} /1 End catch CORBA:: SystenException

catch (...)

{ cerr << "Unexpected system exception" << endl;
exit(1);

} // End catch ...
nyi nterface: : myobj ect _var nyvar;

try
{ myvar = nyinterface:: myobject::_narrow(obj);
} /1 End try

catch (CORBA:: Syst emExcepti on &sysEx)
{ cerr << "Unexpected system exception" << endl;
cerr <<&syskEx;
exit(1);
} /1 End catch CORBA:: SystenException
} // End main

Server Side

Use the code below as a model. This example shows a C++ CORBA server POA init for the ORBIX ORB. For
POA, other ORBS will have a different initialization sequence.

int main
(int argc,
char *argv[]
)
{ try
{ // initialize the ORB
orb_var orb = CORBA: :ORB_init(argc, argv, "Obix");
/] obtain an object reference for the root POA
obj ect _var obj
= orb->resolve_initial _references ("RootPQA");
POA var poa = POA:: _narrowobj);
/'l incarnate a servant
My_Servant _|I npl servant;
/1 Inplicitly register the servant with the root PQOA
obj = servant._this ();
//start the POA listening for requests
poa -> the_POAManager ()->activate ();
//run the orb's event | oop
orb->run ();
} /] End try
catch (CORBA: : SystenException &sysEx)
{ I/ sone exception handling code
} // End catch
} // End nmin

Page 232

Part 5: Developer Guidance

G1203

Localize frequently used CORBA-specific code in modules that multiple applications can use.
Rationale:

In a family of applications, similar patterns of CORBA Object Request Broker (ORB) invocation sequences
frequently arise. This is common in service object initialization, policy association, discovery, binding, and release
handling. Implementing this functionality in a utility library paradigm localizes the code to reduce maintenance and
facilitate extensibility, and assures consistency across the family of applications.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Extensibility

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services /| CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Do the standard object policy association CORBA invocations occur in more than one module?

Procedure;

The presence of "CORBA: : Pol i cyLi st " in C++ indicates policy presence.

Example:

None

2) Test:

Do the standard object initialization CORBA invocations occur in more than one module?

Procedure:

The presence of "CORBA: : ORB_var " or "CORBA: : ORB_i ni t "in C++ indicates ORB initialization. The presence of
"CORBA: : Obj ect _var " in C++ indicates ORB access.

Example:

None

3) Test:

Do the standard object policy association CORBA invocations occur in more than one module?

Procedure;

The presence of "CORBA: : Pol i cyLi st " in C++ indicates policy presence.

Page 233

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1282
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance
Example:

None

4) Test:

Do the standard object discovery CORBA invocations occur in more than one module?

Procedure:

The presence of "Resol ve_Nani ngSer vi ce() "in C++ indicates intended access to one of CORBA's discovery
capabilities.

Example:

None

5) Test:

Do the standard object binding and release CORBA invocations occur in more than one module?

Procedure:

The presence of ": : _narrow(obj .in())"or"CORBA: : i s_nil ("in C++ indicates activity associated with obtaining
and validating an object binding to a legitimate reference. The presence of "CORBA(r el ease) (" in C++ indicates
intended release of a CORBA-bound object reference.

Example:

None

Page 234

Part 5: Developer Guidance

G1204

Create configuration services to provide distributed user control of the appropriate configuration parameters.
Rationale:

For user-modifiable configuration settings that are intended to be accessible by distributed processes at runtime,
the appropriate mechanism for implementation involves CORBA services. The first form is a network service to be
invoked as a client by the target system application at initialization. This can support a consistent, network-wide
distribution of startup parameters. The second form is a service implemented by the target application which allows
communication to the application during execution (after startup). This allows real-time configuration changes for
matters such as Portable Object Adapter (POA) instantiation threading policies to address load management.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Decentralized Operations
and Management

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Is a service defined in the IDL to obtain the configuration parameters?

Procedure;

Review the code for a service that can be used to obtain configuration.

Example:

The following code is an example of a CORBA server that instantiates a configuration service. The service manages
the individual configuration parameters for the servers on the ORB.

Ada Example

CORBA. ORB. | | OP_Engl i sh;
pragma El aborate_Al | (CORBA. ORB. | | OP_Engl i sh);
with CORBA ;
wi t h CORBA. BOA ;
with CORBA. ORB ;
wi th CORBA. bj ect ;
with Configuration.|npl
wi th Configuration. Hel per ;
wi th Ada. Exceptions ;
with Ada. Text 10 ;
with ny_CORBA ;
with Event _Ada_ APl ;
procedure Configuration_Server is
- required for O bExpress
First _Variable : CORBA ORB.Life_Span ;
- declare the object instance
Configuration_Qoject : Configuration. Ref ;
--variabl es needed for ior witing

Page 235

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1276
https://nesi.spawar.navy.mil/nesix//View/P1276
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

No_Ti neout : constant := 0.0;
Config_Nane : constant String
;= Configuration. Hel per. Si npl e_Nane ;
Config_Host : Corba.String ;
Config_Port : Corba.String ;
begin -- Configuration_Server
-- create (and initialize) the object
-- config file is read and the port needed
-- isin there
Conf i gur ati on_QCbj ect
;= Configuration.|npl.Create(Config_Nane) ;
GET_HOSTNAME:
begin
Conf i g_Host
;= Configuration.CGet_String
(Self => Configuration_Object,
Name => Corba. To_Corba_String
("Local _Host _Shortnanme")
)
exception -- GET_HOSTNAME
when ot hers =>
Ada. Text _| O Put _Li ne
("ERROR: M ssing paraneter”
& "<Local _Host _Short name> "
& "in the config_paraneters.txt file."
)
end GET_HOSTNAME;
GET_CS_PORT:
begin
Confi g_Port
;= Configuration. Get_String
(Self => Configuration_Object,
Name => Corba. To_Corba_String
("Config_Service_Port")
)
Exception -- GET_CS_PORT
when ot hers =>
Ada. Text _| O Put _Li ne
("ERROR M ssing paraneter
& "<Config_Service_Port> "
& "in the config_paraneters.txt file.
)
end GET_CS_PORT;
Ada. Text _| O Put _Li ne
("Host =>"
& Corba. To_St andard_Stri ng(Confi g_Host)
& " Port =>"
& Corba. To_Standard_String(Config_Port)

)
--timeout 0 so we can wite | OR out
CORBA. BOA. | npl _I s_Ready
(Tinme_Qut => No_Ti meout,
Server _| nstance_Nanme => Confi g_Nane,
Li sten_On_Endpoi nts =>
"tep: /"
& Corba. To_St andard_Stri ng(Confi g_Host)
& "
& Corba. To_Standard_String(Config_Port)

-- HERE | S WHERE CODE FOR THE | OR TO BE
-- USED ON THE C++ ORB

-- get the IOR and wite it to disk
nmy_CORBA. Wite |OR To_File
(Server_Nanme => Config_Nane,
Server _Ref =>
CORBA. Ohj ect . Ref (Confi gurati on_Obj ect)
)
READY_BLOCK:
begin
-- notify subscribers of availability
-- of configuration paraneters via the
-- event service
Event _Ada_API . Send

Page 236

Part 5: Developer Guidance

(Channel _Nanme => "Config_Channel ",
Event => "Configuration Service Ready."
)
Exception - READY_BLOCK
when ot hers =>
Ada. Text _1 O Put _|ine
("Configuration_Server
& Exception sending ready signal."

end READY_BLOCK;
Ada. Text _1 O Put _|ine
("Configuration_Server
& Configuration Service Ready."
)
CORBA. BOA. | npl _I s_Ready
(Tinme_Qut => CORBA. I nfinite_Ti meout,
Server _| nstance_Name => Confi g_Nanme
)
exception -- Configuration_Server
when X_Qther: others =>
Ada. Text _1 O Put _|ine
("Configuration_Server
& Ada. Excepti ons. Excepti on_Name(X_Ct her)
)

end Configuration_Server ;

C++ Example

The following code snippets depict a C++ server that instantiates a version collection service for an About box.

It uses the IORs from the servers on the Ada ORB via the IOR files, and invokes those objects to get version
information. It uses the utility templates for binding. It exemplifies the approach described in Encapsulate CORBA
ORB operations for C++.

Note: This was done on the ORBIX C++ and Ada ORBs.

#i ncl ude <i ostream h>

#i ncl ude <rw cstring. h>

#i fndef _STDIO H

#i ncl ude <stdio. h>

#endi f

#i f ndef _STRI NG H

#i ncl ude <string. h>

#endi f

#i f ndef _STDLIB_H

#i ncl ude <stdlib. h>

#endi f

#i f ndef _ASSERT_H

#i ncl ude <assert. h>

#endi f

/1 Include files for all the objects desired for
/'l collecting version information

// Ada configuration service

#i f ndef configuration_hh

#i ncl ude <configuration. hh>

#endi f

/1 include files for other desired services;
/'l renoved for brevity

/'l other support objects and utilities
#i f ndef _CORBA_UTILS__

#i ncl ude <corba_utils. h>

#endi f

#ifndef _ LOG API_H _

#i ncl ude <l og_api . h>

#endi f

#i f ndef _VERSI ON_AGENT_GLOBALS_H_

#i ncl ude "version_agent _gl obal s. h"
#endi f

const RWCString Version_Agent_i:: MSG_ VERSI ON_NOT_FOUND_

Page 237

Part 5: Developer Guidance

= "Version Info. not found for ";
const CORBA:: ULong Version_Agent _i:: MAXSERVERS
= 12;
Versi on_Agent _i:: Version_Agent_i(): theVersionlnfoPtr_(0)
{ theVersionlnfoPtr_
= new versi onl nf oType(MAXSERVERS) ;
t heVer si onl nf oPt r _- >l engt h(MAXSERVERS) ;
} // End constructor
Ver si on_Agent _i :: ~Versi on_Agent _i ()
{ // Do nothing
} // End destructor
/**
FUNCTI ON NAME: cr eat eVer si ons
PURPOSE: hel per function that gets the version info
| NPUT:
QUTPUT:
**/
voi d Version_Agent _i::createVersions ()
{ char *iorString;
int bBindCk = 0;
int versionCnt = O;
ver si onl nfoType* rl = theVersionlnfoPtr_;
CORBA: : ULong MAXSERVERS Ver si on_Agent _i : : MAXSERVERS _;
/'l server variables for all the objects desired
/1 for collecting version information
/1 nost declarations renoved for brevity
Event Servi ceFactory_var es_var;
/1 Ada configuration service
Conf i guration_var cfg_var;
/'l === load the versions of the individual conponents
/'l Code for other services renoved for brevity
/1 This is an ADA service using the IOR string
{ //****************** Conflg SerVI Ce khkkkkkkhkkkhkkhkkk*k
| ogMsg
("get config service version",
Log_Api : : DEBUG 1_MsG

DE

RWCString errMsg
(Version_Agent _i:: MSG_VERSI ON_NOT_FOUND_. dat a()
) .

errMsg. append ("Configuration Service");
/1l here we get the IOR fromthe ADA orb using
/'l the hel per nethods
iorString = getlorFile("Configuration");
//tenplate class to hide binding issues to the ADA ORB
If (iorString)
{ Ada_Bi nder < Configuration,
Configuration_var > bo (iorString);
bBi ndCk = bo. bi ndToAda(&fg_var) ;
/'l get the version info and load it

If (bBi ndCk
& & !'(CORBA: :is_nil(cfg_var))
)
{ try
{ char* str = cfg_var->version();
if (str)

{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(str);

del ete str;
} // End if
el se

{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMg.data());
} // End el se
} // End try
catch(...)
{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMg.data());
} // End catch
cfg_var->_cl oseChannel ();
} /] End if
el se
{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMg.data());

} // End el se
Page 238

Part 5: Developer Guidance

if(iorString)
{ free (iorsString);
iorString = NULL;

} /] End if
} //endif iorstring
el se

{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMg.data());
} // End else
/1l eaving scope rel eases the corba object
} //end cfg_svf
bBi ndCk = 0;
ver si onCnt ++;
assert (versionCnt <= MAXSERVERS) ;
} // End createVersions
/**
FUNCTI ON NAME: start
PURPOSE: handl e startup specific stuff
| NPUT:
QUTPUT:
**/
voi d Version_Agent_i:: start
(CORBA:: Environnent & T_env
) throw (CORBA: : Syst enExcepti on)
{ //get all the version info
createVersions();
} // End start
/**
FUNCTI ON NAME: st op
PURPOSE: handl e stop specific stuff
| NPUT:
QUTPUT:
**/
voi d Version_Agent_i:: stop
(CORBA:: Environnent & T_env
) throw (CORBA: : Syst enExcepti on)
{ /! Release info
/1 Let CORBA tine out the service
| ogMsg ("stop received");
Ver si onAgent d obal s: : nyboa- >set NoHangup (0);
Ver si onAgent G obal s: : nyboa- >deacti vat e_i npl
("Version_Agent");
} //end version inpl

Page 239

Part 5: Developer Guidance

G1205

Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.
Rationale:

For user-maodifiable configuration settings that are host-specific and that are not intended to be accessible by
distributed processes at runtime, the appropriate mechanism for implementation involves local persistent storage.
The appropriate form of local storage depends on the local host architecture and may be file- or host-DBMS
oriented. It is important that such parameters are not stored in source code that requires build processes for
modification.

For SOA services, configuration parameters relating to invoked services should not be service-host-specific at the
invoking client application.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / CORBA

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / CORBA

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / CORBA

NESI / Part 5: Developer Guidance / Middleware / CORBA

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Are there any user-modifiable configuration parameters hard coded in the non-auto-generated files?

Procedure:

Inspect the code for constant strings or constants that contain configuration parameters.

Example:

None.

Page 240

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1208

Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.
Rationale:

By not replacing old methods of objects, library functionality consumers can continue to operate and not be forced to
upgrade.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are methods that are being replaced marked with deprecated tags?

Procedure;

Check revision history to make sure that methods are deprecated and not removed unless they have expired.
"Expired" means that they have passed the expected shelf life, as defined by the project standards or other standards
documentation.

Example:

None

2) Test:

Do new methods being added contain information on methods they are replacing?

Procedure:

Check to make sure newly added methods contain information and rationale on the methods they are replacing.

Example:

None

Page 241

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1213

Provide an architecture design document.
Rationale:

An architectural design document provides evaluators with a roadmap of the application. This helps evaluators verify
that the application follows guidance such as using the Model View Controller model.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design
NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design
NESI / Part 5: Developer Guidance / Public Interface Design

Evaluation Criteria:
1) Test:

Do the project deliverables for evaluation include a document that contains the architectural design of the application?

Procedure;

See if an architectural design document exists.

Example:

None

Page 242

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1214

Provide a document with a plan for deprecating obsolete interfaces.
Rationale:

This information allows users to phase out deprecated interfaces. For instance, Sun plans to maintain backward
compatibility for the JDK for seven years. This means developers can count on deprecated methods not being
removed for seven years.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design
NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design
NESI / Part 5: Developer Guidance / Public Interface Design

Evaluation Criteria:
1) Test:

Do the project deliverables for evaluation include a document that contains a plan for deprecating obsolete interfaces?

Procedure;

See if a document with a plan for deprecating obsolete interfaces exists.

Example:

None.

Page 243

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1215

Provide a coding standards document.
Rationale:

The standards ensure a consistent code base. A coding standards document defines rules to keep code readable,
maintainable, and secure.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design

NESI / Part 5: Developer Guidance / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Apply Secure
Coding Standards

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Apply Secure Coding Standards
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Apply Secure Coding Standards
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Apply Secure
Coding Standards

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Policies and Processes for Implementing Software Security / Secure Coding and Implementation Practices / Apply
Secure Coding Standards

NESI / Part 5: Developer Guidance / Software Security / Policies and Processes for Implementing Software Security
/ Secure Coding and Implementation Practices / Apply Secure Coding Standards

Evaluation Criteria:
1) Test:

Do the project deliverables for evaluation include a coding standards document?

Procedure:

See if a coding standards document exists.

Example:

None

Page 244

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1216

Provide a software release plan document.
Rationale:

The release plan document ensures that there is a formal process for releasing the software. It includes a
description of how to acquire the software from the software configuration management (SCM) repository and how to
build, label, and release it.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Public Interface Design

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Public Interface Design
NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Public Interface Design
NESI / Part 5: Developer Guidance / Public Interface Design

Evaluation Criteria:
1) Test:

Do the project deliverables for evaluation contain a release plan document?

Procedure;

See if a software release plan exists.

Example:

None

Page 245

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1217

Develop and use externally configurable components.
Rationale:

To be portable and to accommodate reuse, components must be configurable using external descriptors usually
defined in XML. Examples of things that might need to be configured include the following:

» A data source for the component to obtain a Java Database Connection (JDBC)
e The location of a service with which the component must communicate
» The location of implementation classes that the component uses

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / C4ISR: Payload Platform / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Implement a Component-Based
Architecture

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Develop Design Patterns for Data and Services / Implement a
Component-Based Architecture

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Evolve Computing Infrastructure / Implement a
Component-Based Architecture

NESI / Part 5: Developer Guidance / Implement a Component-Based Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are deployment descriptors used?

Procedure:

Check for the existence of deployment descriptors in the appropriate directories. Usually the file is named web. xm .

Example:

None

Page 246

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1363
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1406
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1429
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1218

Use a build tool that supports operation in an automated mode.
Rationale:

During testing, human interaction can be a cause of error and unrepeatable results. Operating in automated mode
can eliminate these errors.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the tool have a build all target?

Procedure;

Check the build scripts or descriptors of the build tool for the ability to build the entire project, system, or application.

Example:

None

Page 247

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1219

Use a build tool that checks out files from configuration control.
Rationale:

To make sure all the parts of the build are under configuration control, compare all files with the configuration
baseline, and download the appropriate files.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the tool have a checkout target?

Procedure;

Check the build scripts or descriptors of the build tool for the ability to check out the entire project, system, or
application.

Example:

None

Page 248

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1220

Use a build tool that compiles source code and dependencies that have been modified.
Rationale:

To limit the changes made between builds, only compile code that has been modified. If there are no intermediate
files, then compile all files.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the tool have a compile target?

Procedure;

Check the build scripts or descriptors of the build tool for the ability to compile the entire project, system, or application.

Example:

None

2) Test:

Do all the intermediate files (e.g., . obj or. cl ass) have the same date and time stamps?

Procedure:

Scan the files for date and time stamps.

Example:

None

Page 249

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1221

Use a build tool that creates libraries or archives after all required compilations are complete.
Rationale:

Libraries should be able to be recreated independently of any executables and should always verify that any
intermediate files are not stale.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the tool have a generate library target?

Procedure;

Check the build scripts or descriptors of the build tool for the ability to generate the composing libraries or archives.

Example:

None

Page 250

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1222

Use a build tool that creates executables.
Rationale:

An executable is dependent on many files, including source files, intermediate files, and libraries or archives. The
building of the executable must support a control process that includes configuration management, compiling, and
testing.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the tool have an executable target?

Procedure;

Check the build scripts or build tool descriptors for the ability to build the executables for the entire project, system, or
application.

Example:

None

Page 251

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1223

Use a build tool that is capable of running unit tests.
Rationale:

All code should be able to be tested independently of creating intermediate files, libraries, or executables.

Tests should be unit tests as well as system-level tests.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the tool have a test target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to test the entire project, system, or application.

Example:

None

Page 252

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1224

Use a build tool that cleans out intermediate files that can be regenerated.
Rationale:

For security reasons, all files that comprise the build need to be under configuration control. Cleaning out all files is
essential in ensuring that only approved code is incorporated into the build.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Does the tool have a clean target?

Procedure;

Check the build scripts or descriptors for the build tool for the ability to remove the entire project, system, or application
files.

Example:

None

Page 253

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1225

Use a build tool that is independent of the Integrated Development Environment.
Rationale:

Some build tools are tightly coupled with an Integrated Development Environment (IDE) that causes vendor lock-
in and license issues when the software is delivered to the Government.

Referenced By:

NESI / Part 5: Developer Guidance / Automate the Software Build Process

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

Evaluation Criteria:
1) Test:

Is the build tool one of the recognized standards, such as ant?

Procedure;

Check for files named bui | d. xni .

Example:

None

2) Test:

Is the build tool one of the recognized standards, such as nake or nmake?

Procedure:

Check for files with the name nmakef i | e.

Example:

None

3) Test:

Does the build tool require a license?

Procedure;

Check for files with the name makefi | e.

Example:

None

Page 254

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268

Part 5: Developer Guidance

G1237

Do not hard-code the configuration data of a Web service vendor.
Rationale:

Some vendors generate code that passes Web service vendor-specific configuration data during initialization or
startup. This reduces the portability of the code and can cause maintenance problems later.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Web Services / Insulation and
Structure

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Net-Centric
Environments / Middleware / Web Services / Insulation and Structure

NESI / Part 5: Developer Guidance / Middleware / Web Services / Insulation and Structure

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Is there any Web service vendor-specific configuration data in the client code?

Procedure:

Parse the code and look for hard-coded configuration data that might be used to configure the vendor's Web service.

Example:

None

Page 255

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1425
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1239

Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of vendor-
dependent connections to the enterprise.

Rationale:

This isolation increases maintainability. Guidance G1071 asserts that vendor-neutral connection mechanisms should
be used. When vendor-specific connection mechanisms are unavoidable, this guidance will apply.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Technologies and
Standards for Implementing Software Security / INDI Security

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Technologies and
Standards for Implementing Software Security / INDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Technologies and Standards
for Implementing Software Security / JNDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Technologies and Standards for Implementing Software Security / JNDI Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Controls / Technologies
and Standards for Implementing Software Security / INDI Security

NESI / Part 5: Developer Guidance / Software Security / Technologies and Standards for Implementing Software
Security / JINDI Security

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:
Is the connection mechanism vendor-dependent?
Procedure:
Examine the source code for vendor-specific imports or includes.

Make sure that all references to the vendor-specific connection mechanisms are isolated to a single class (like a
helper) or set of methods that are used as part of an isolation design pattern such as facade, proxy, or adapter.

Also, look for hard-coded vendor-specific connection strings.

Example:

None

Page 256

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1426
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1245

Isolate the Web service portlet from platform dependencies using the Web Services for Remote Portlets (WSRP)
Specification protocol.

Rationale:

The OASIS WSRP 1.0 Specification accounts for the fact that producers and consumers may be implemented on
very different platforms, such as a Java EE-based Web service, a Web service implemented on the Microsoft .Net
platform, or a portlet published directly by a portal.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Decentralized Operations
and Management

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
/ Web Portals

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Web Portals

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Web Portals

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the Web service implement the WSRP Registration interface?

Procedure:

Look for the occurrence of the get Ser vi ce, r egi st er, der egi st er, and nodi f yRegi strati on methods as
defined in the OASIS WSRP Specification.

Example:

public static RegistrationService getService
(java.lang. String baseEndpoi nt
) throws java.l ang. Exception
publ i ¢ Regi strati onContext register
(java.lang. String consuner Nane,
java.lang. String consuner Agent,
bool ean met hodGet Support ed,
java.lang. String[] consunerModes,
java.lang. String[] consuner WndowSt at es,
java.lang. String[] consunerUser Scopes,
java.lang. String[] custonserProfil eData,
Property[] registrationProperties
) throws java.l ang. Exception
publ i ¢ ReturnAny deregister
(java.lang. String registrati onHandl e,
byte[] registrationState
) throws java.l ang. Exception
public RegistrationState nodifyRegi stration
(RegistrationContext registrationContext,
Regi strati onData registrationbData
) throws java.l ang. Exception

Page 257

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1276
https://nesi.spawar.navy.mil/nesix//View/P1276
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance
2) Test:

Does the Web service implement the WSRP Service Description interface?

Procedure:

Look for the occurrence of the get Ser vi ce, r egi st er, and get Ser vi ceDescri pti on methods as defined in the
OASIS WSRP Service Description APl Specification.

Example:

public static ServiceDescriptionService getService
(java.lang. String baseEndpoi nt
) throws java.l ang. Excepti onThr ows:
j public ServiceDescription getServiceDescription
(Regi strationContext registrationContext,
java.lang. String[] desiredLocal es
) throws java.l ang. Exception

3) Test:

Does the Web service implement the WSRP Portlet Configuration interface?

Procedure:

Look for the occurrence of the get Servi ce, get Port| et Descri ption,clonePortlet,destroyPortlets,
setPortl et Properties,getPortl etProperties andgetPortl et PropertyDescription methods as
defined in the OASIS WSRP Portlet Configuration API Specification.

Example:

public static Portl et Managenent Servi ce get Servi ce
(java.lang. String baseEndpoi nt
) throws java.l ang. Exception
public PortletDescripti onResponse getPortl et Description
(RegistrationContext registrationContext,
Port| et Cont ext portl et Context,
User Cont ext user Cont ext,
java.lang. String[] desiredLocal es
) throws java.l ang. Exception
public PortletContext clonePortl et
(RegistrationContext registrationContext,
Port| et Cont ext portl et Context,
User Cont ext user Cont ext
) throws java.l ang. Exception
publ i c DestroyPortl et sResponse destroyPortlets
(RegistrationContext registrationContext,
java.lang. String[] portletHandles
) throws java.l ang. Exception
public PortletContext setPortletProperties
(RegistrationContext registrationContext,
Port| et Cont ext portl et Context,
User Cont ext user Cont ext,
PropertyLi st propertylList
) throws java.l ang. Exception
public PropertylList getPortletProperties
(RegistrationContext registrationContext,
Port| et Cont ext portl et Context,
User Cont ext user Cont ext,
java.lang. String[] nanes
) throws java.l ang. Exception
public PortletPropertyDescriptionResponse get Portl et PropertyDescription
(RegistrationContext registrationContext,
Port| et Cont ext portl et Context,
User Cont ext user Cont ext,
java.lang. String[] desiredLocal es
) throws java.l ang. Excepti onThr ows

Page 258

Part 5: Developer Guidance
4) Test:

Does the Web service implement the WSRP Markup interface?

Procedure:

Look for the definition of the get Mar kup, per f or nBl ocki ngl nt eracti on,i ni t Cooki e and r el easeSessi ons
methods as defined in the OASIS WSRP Markup API Specification.

Example:

publ i ¢ Mar kupResponse get Mar kup
(RegistrationContext registrationContext,
Port| et Cont ext portl et Cont ext,
Runt i meCont ext runti neCont ext,
User Cont ext user Cont ext,
Mar kupPar anms mar kupPar ans
) throws java.l ang. Exception
public void perfornBl ockingl nteraction
(RegistrationContext registrationContext,
Port| et Cont ext portl et Cont ext,
Runt i meCont ext runti neCont ext,
User Cont ext user Cont ext,
Mar kupPar ams mar kupPar ans,
I nteracti onParans interactionParans
) throws java.l ang. Exception
public Extension[] initCookie
(RegistrationContext registrationContext
) throws java.l ang. Exception
public Extension[] rel easeSessions
(Regi strationContext registrationContext,
java.lang. String[] sessionlDs
) throws java.l ang. Excepti on

Page 259

Part 5: Developer Guidance

G1267

Use HTML data entry fields on Web pages.
Rationale:

Macromedia Flash and Java Applets can also support data input but are not HTML standards and tend to decrease
the maintainability of a Web site.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Do any Web pages have data entry fields?

Procedure:

Search all Web pages for the "applet" and "embed" tags. Load each page found in the search by loading and visually
inspecting to see if Flash or Applets are used for data entry.

Example:

Correct Usage:

Person's Name:

111

Incorrect usage:

Applet

Flash

Page 260

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1268

Label all data entry fields.
Rationale:

A label provides the user with a brief description of the text to be entered. Labels are essential for a user to
understand the data entry field.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction

Evaluation Criteria:
1) Test:

Are all data entry fields labeled?

Procedure;

Search all Web pages for the word "form" and load each resulting Web page in a browser. Visually inspect each data
entry field to make sure it has labels.

Example:

None.

Page 261

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1270

Include scroll bars for text entry areas if the data buffer is greater than the viewable area.
Rationale:

Scroll bars provide a visual cue to the user that the text extends beyond the viewable area. Scroll bars will appear by
default for an HTML text area.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction

Evaluation Criteria:
1) Test:

Do any Web pages turn off scroll bars for text areas?

Procedure;

Search all Web pages and style sheets for the phrase "overflow:hidden" or a form thereof. This turns off scroll bars
using styles, but only works in certain browsers. Make sure it is not used.

Example:
Correct Usage

Scroll bars should not be hidden.

Incorrect Usage

Inline style:

<htnm >

<body>

<fornp

<textarea styl e="overfl ow hi dden"></t ext area>
</form

</ body>

</htm >

External style:

textarea.scroll {
over f | ow hi dden;
}

Page 262

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1271

Provide instructions and HTML examples for all style sheets.
Rationale:

An instruction manual will enable developers to use the style sheet correctly and efficiently.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Extensibility

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
|/ Style Sheets

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Style Sheets

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Style Sheets

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are instructions included for each style sheet provided?

Procedure;

Verify that a document is provided that contains instructions and example code for each style provided.

Example:

Correct usage:

Cascadi ng styl e sheet:

.td-itens {
text-align:right;

}

Example of usage:

Incorrect usage:
No HTML example explaining style usage.

Page 263

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1282
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1276

Do not modify the contents of the Web browser's status bar.
Rationale:

Using the browser's status bar to display text unrelated to status affects interoperability because a user expects the
status bar to provide status and nothing else.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Do any of the Web pages modify the browser status bar?

Procedure;

Search every Web page for the word "status" and visually inspect each of the search results to see if the status bar has
been modified.

Example:
Correct usage:

Web pages contain no references to w ndow. status
Incorrect usage:

wi ndow. status = 'text to display in status bar’

Page 264

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1277

Do not use tickers on a Web site.
Rationale:

Tickers can irritate the user and use unnecessary bandwidth.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

Evaluation Criteria:
1) Test:

Do any Web pages contain scrolling text?

Procedure;

Most tickers are written using Applets or Flash. Search all Web pages for the "applet" and "embed" tags. Load each
page found in the search and visually inspect to make sure no tickers exist.

Example:
Correct usage:

No appl et or flash references contain tickers.
Incorrect usage:

Applet:

appl et code="nyticker.class" w dt h="200" hei ght ="200"
Flash:

enbed src="nyticker.swf" w dt h="200" hei ght="200"

Page 265

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1278

Use the browser default setting for links.
Rationale:

Browsers underline links by default. Do not rely on "mouse over" to identify links. Using mouse over to designate
links can confuse and slow down infrequent users because they are uncertain which links perform which functions.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Do any Web pages or style sheets modify the browser default settings for links?

Procedure:

Search all the Web pages and style sheets for "A:link," "A:visited" and "A:active." Inspect all search results and make
sure none of them modify the "A:" items.

Example:

Correct usage:

Web pages and style sheets should have no reference to A:link, Avisited or A active.

Incorrect usage:

A:link, Avisited, A active {
t ext - decor ati on: none;

}

Page 266

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1283

Use linked style sheets rather than embedded styles.
Rationale:

Only by referencing an external file will you be able to update the look of an entire Web site with a single change.
Also, by pulling style definitions out of the pages, they (Web pages) will be smaller and faster to download.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
|/ Style Sheets

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients / Style Sheets

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients / Style Sheets

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Scalability

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Reusability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Browser-Based Clients
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Browser-Based Clients

NESI / Part 5: Developer Guidance / User Interfaces / Browser-Based Clients

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

Evaluation Criteria:
1) Test:

Does a Web page use the LINK tag to include external style sheets instead of embedding styles?

Procedure;

View the source of the HTML page. The header tag (head) should contain links to external style sheet (.css) files. The
header tag should not contain any style tags.

Example:

Correct usage:

External style:

<head>
<link rel =styl esheet href="style.css" type="text/css" nedi a=screen>
<link rel =styl esheet href="basic.css" type="text/css" nedi a=screen>
</ head>

Incorrect usage:

Embedded style:

<head>
<style type="text/css">
td {
background: #ff 0
}
</styl e>
</ head>

Page 267

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1270
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1284
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259

Part 5: Developer Guidance

G1284

Use only one font for HTML body text.
Rationale:

Users may not have a wide variety of fonts available in their browser, so it is best to use a single, common font. The
general standard is to make body text sans serif since most people find sans serif fonts easier to read on monitors
and serif fonts better for printed materials.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Does the HTML or style sheet refrain from using more than one font?

Procedure:

Search all Web pages and style sheets for the word "font." Make sure only one type of font is used for body text. May
need to visually inspect Web pages to see if a defined font style is used within the body.

Example:

Correct usage:

Cascading style sheet:

body. mai n {
font:sans-serif;
}

HTML:
Incorrect usage:

Several font styles are used within a body.

Page 268

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1285

Use relative font sizes.
Rationale:

Relative font sizes make Web sites more accessible and support meeting the requirements of Section 508 of the
Rehabilitation Act of 1973. Relative font sizes allow for a low-vision user to enlarge the size of the text. Relative font
sizes also support maintainability by not hard coding fixed font sizes.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Open Architecture
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity
NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction

Evaluation Criteria:
1) Test:

Are any absolute font sizes utilized?

Procedure:

Search all Web pages and style sheets for the word "font." Inspect the results to make sure no fixed fonts are used
(e.g., 12pt).

Example:
Correct Usage

Relative or no font sizes settings are used.
Cascading style sheets:

p{
font-size: 200%
}

p{
font-size:2em
}

Incorrect Usage

Cascading style sheets:

p {
font-size: 12pt;
}

HTML (the font attribute should not be used at all within HTML code, only external style sheets):

Page 269

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1268
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1286

Provide text labels for all buttons.
Rationale:

Users need to understand the purpose of all buttons. In some cases an image on the button is not sufficient to
convey meaning. Screen scrapers used by the visually impaired work better when text labels are available for
buttons.

In cases where icons serve as buttons in order to fit within a small display device (such as a personal digital
assistant), providing an option to enable text labels (or providing alternate attributes in the case of Web-based
interfaces) supports screen scrapers.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction

Evaluation Criteria:
1) Test:

Do all buttons have associated text labels?

Procedure:

Inspect the user interface to verify text labels are available for all buttons.
Text labels may optionally be displayed:
- on or near the button
- as a tooltip when the user hovers over a button
- as part of a help system where a user clicks and identify tool and then clicks a button.
Button label text may not be enabled by default on all applications, especially systems with small resolution screens
such as PDAs.

Example:

Correct usage:

<form acti on="nmi | t o: mre@bc. cont

met hod="post ">

<input type="submit" nane="email but"
val ue="Send feedback" />

</ forne

Incorrect usage (using images only):

<i nput type="image" src="send.gif" nane="
emai | but"/ >

Page 270

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1287

Provide feedback when a transaction will require the user to wait.
Rationale:

Users may think that the application has stopped running or is malfunctioning.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Enterprise Service
Management

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction

Evaluation Criteria:
1) Test:

Does the application provide feedback during long processes?

Procedure;

Run the application and observe any processes that take longer than 10 seconds to complete. Observe if any status
indication is provided to alert the user of the status.

Example:

None

Page 271

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1278
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1292

Use text-based Web site navigation.
Rationale:

Text-based navigation works better than image-based navigation because it enables users to understand the
link destinations. Users with text-only browsers and browsers with deactivated graphics can see only text-based
navigation options.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are there any instances where graphics are used for navigation?

Procedure:

Visually inspect all Web pages and make sure navigation elements are textual.

Example:

None

Page 272

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1294

Provide a site map on all Web sites.
Rationale:

A site map shows explicit organization of the site. Inexperienced users do not readily form a mental model of the way
that information is organized in a Web site, making it hard for them to recover from navigational errors.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

Evaluation Criteria:
1) Test:

Does the Web site have a site map?

Procedure;

Search all Web pages for anything with the name "sitemap,
to make sure a site map is included.

site map" and "map." Visually inspect the search results

Example:

None

Page 273

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1295

Provide redundant text links for images within an HTML page.
Rationale:

Redundant text links for images within an HTML page allow users to navigate the Web page even if their browsers
do not display images (as in situations where the Web browser renders content without images due to bandwidth
considerations). Screen scrapers that assist the visually impaired also use redundant text links. Images may occur
within Web pages as part of the content or navigation controls to include image maps.

Referenced By:

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Service-Oriented
Architecture (SOA)

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / User Interface Services / User Interfaces / Human-Computer
Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DISR Service Areas / User (Physical/Cognitive) / Human-Computer Interaction / Human
Factor Considerations for Web-Based User Interfaces

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Common End User Interfaces / User Interfaces /
Human-Computer Interaction / Human Factor Considerations for Web-Based User Interfaces

NESI / Part 5: Developer Guidance / User Interfaces / Human-Computer Interaction / Human Factor Considerations
for Web-Based User Interfaces

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Services / Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test:

Are alternative text links provided for all HTML page images used for navigation?

Procedure:

Verify that alternative text links are provided for images used for navigation by inspecting the HTML source code and
testing the HTML page in a browser with image rendering turned off.

Example:

None.

Page 274

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1259
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1372
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1373
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1405
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1249
https://nesi.spawar.navy.mil/nesix//View/P1275

Part 5: Developer Guidance

G1301

Practice layered security.
Rationale:

An application with layered security provides more protection against attacks. Combining multiple layers of security
defenses can provide additional protection when one layer is broken.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Practice Defense in
Depth

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Practice Defense in Depth

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Practice Defense in Depth

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Practice Defense in
Depth

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Policies and Processes for Implementing Software Security / Secure Coding and Implementation Practices / Practice
Defense in Depth

NESI / Part 5: Developer Guidance / Software Security / Policies and Processes for Implementing Software Security
/ Secure Coding and Implementation Practices / Practice Defense in Depth

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Transport / Design Tenet: Layering and Modularity
NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Information Assurance/Security / Other Design Tenets
NESI / Part 2: Traceability / DISR Service Areas / Data Interchange Services / Services / Core Enterprise Services
(CES) / Overarching CES Issues / CES Definitions and Status

NESI / Part 2: Traceability / DISR Service Areas / Distributed Computing Services / Services / Core Enterprise
Services (CES) / Overarching CES Issues / CES Definitions and Status

NESI / Part 2: Traceability / DISR Service Areas / Environment Management / Services / Core Enterprise Services
(CES) / Overarching CES Issues / CES Definitions and Status

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Provide Core Enterprise Services / Core Enterprise Services
(CES) / Overarching CES Issues / CES Definitions and Status

NESI / Part 4: Node Guidance / Services / Core Enterprise Services (CES) / Overarching CES Issues / CES
Definitions and Status

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Enterprise Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Network Resource Management Mechanism Protection / Security
and Management / Enterprise Security

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Enterprise Security
NESI / Part 4: Node Guidance / Security and Management / Enterprise Security

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Enterprise Security / Integrity

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Integrity

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Integrity

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Network Resource Management Mechanism Protection / Security
and Management / Enterprise Security / Integrity

Page 275

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1241
https://nesi.spawar.navy.mil/nesix//View/P1261
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1240
https://nesi.spawar.navy.mil/nesix//View/P1251
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1365
https://nesi.spawar.navy.mil/nesix//View/P1164
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1165
https://nesi.spawar.navy.mil/nesix//View/P1166
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1367
https://nesi.spawar.navy.mil/nesix//View/P1164
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1165
https://nesi.spawar.navy.mil/nesix//View/P1166
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1368
https://nesi.spawar.navy.mil/nesix//View/P1164
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1165
https://nesi.spawar.navy.mil/nesix//View/P1166
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1403
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1165
https://nesi.spawar.navy.mil/nesix//View/P1166
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1130
https://nesi.spawar.navy.mil/nesix//View/P1164
https://nesi.spawar.navy.mil/nesix//View/P1175
https://nesi.spawar.navy.mil/nesix//View/P1165
https://nesi.spawar.navy.mil/nesix//View/P1166
https://nesi.spawar.navy.mil/nesix//View/P1166
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1412
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1130
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1412
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334

Part 5: Developer Guidance

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Enterprise Security /
Integrity

NESI / Part 4: Node Guidance / Security and Management / Enterprise Security / Integrity

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

Evaluation Criteria:
1) Test:

Do internal and external API(s) perform security checks?

Procedure:

Make sure layers of API(s) starting from externally accessible API(s) down through the layers of internally accessible
API(s) provide sufficient security checks. For example, does each layer of the API perform data validation? If internal
APl is calling remote services, is the data sufficiently protected from snoopers (e.g., use of secure sockets)?

Example:

None

2) Test:

Does the application handle security when processing data files?

Procedure:

Embed all application specific resources such as graphics, internal application configuration files such as
internationalization properties/resources, XML files as part of a signed application deployment file (.jar, .exe, etc.).

Example:

None

Page 276

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1130
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280

Part 5: Developer Guidance

G1302

Validate all inputs.
Rationale:

Do not limit input validation to the presentation tier; rather, all external APIs should validate inputs prior to use. This
is just one aspect of defense in depth which can prevent many attacks including SQL Injection, Cross-Site Scripting,
Buffer Overflows, and Denial of Service.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Enterprise Security / Integrity / Data,
Application and Service Integrity

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Integrity / Data, Application and Service Integrity
NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Integrity / Data,
Application and Service Integrity

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Network Resource Management Mechanism Protection / Security
and Management / Enterprise Security / Integrity / Data, Application and Service Integrity

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Enterprise Security /
Integrity / Data, Application and Service Integrity

NESI / Part 4: Node Guidance / Security and Management / Enterprise Security / Integrity / Data, Application and
Service Integrity

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Information Assurance/Security / Other Design Tenets
NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Information Assurance/Security / Design Tenet:
Identity Management, Authentication, and Privileges

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Policy / Design Tenet: Identity Management, Authentication, and Privileges

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Policies and Processes for
Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate Input

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Policies and Processes for Implementing Software Security / Secure Coding and Implementation Practices / Validate
Input

NESI / Part 5: Developer Guidance / Software Security / Policies and Processes for Implementing Software Security
/ Secure Coding and Implementation Practices / Validate Input

Evaluation Criteria:
1) Test:

Does the application provide proper handling for null input?

Procedure:

Check application handling of null values.

Page 277

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1412
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1130
https://nesi.spawar.navy.mil/nesix//View/P1331
https://nesi.spawar.navy.mil/nesix//View/P1332
https://nesi.spawar.navy.mil/nesix//View/P1334
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1338
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1240
https://nesi.spawar.navy.mil/nesix//View/P1251
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1239
https://nesi.spawar.navy.mil/nesix//View/P1240
https://nesi.spawar.navy.mil/nesix//View/P1243
https://nesi.spawar.navy.mil/nesix//View/P1243
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1374
https://nesi.spawar.navy.mil/nesix//View/P1380
https://nesi.spawar.navy.mil/nesix//View/P1383
https://nesi.spawar.navy.mil/nesix//View/P1243
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance
Example:

None

2) Test:

Does the application use prefix or postfix validation (asserts) to verify input parameters?

Procedure:

Check application range validation of externally accessible API(s).

Example:

None

Page 278

Part 5: Developer Guidance

G1304

Unit test all code.
Rationale:

A high percentage of all security violations can be attributed to inadequate or non-existent unit testing. Hackers can
take advantage of these.

Referenced By:

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Apply Quality
Assurance to Software Development

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Policies and Processes
for Implementing Software Security / Secure Coding and Implementation Practices / Apply Quality Assurance to
Software Development

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Policies and Processes
for Implementing Software Security / Secure Coding and Implementation Practices / Apply Quality Assurance to
Software Development

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Enclave, Network and Boundary Protection / Policies and
Processes for Implementing Software Security / Secure Coding and Implementation Practices / Apply Quality
Assurance to Software Development

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Policies and Processes for Implementing Software Security / Secure Coding and Implementation Practices / Apply
Quality Assurance to Software Development

NESI / Part 5: Developer Guidance / Software Security / Policies and Processes for Implementing Software Security
/ Secure Coding and Implementation Practices / Apply Quality Assurance to Software Development

Evaluation Criteria:
1) Test:
Does the project unit test the code base?
Procedure:
Use a coverage tool to determine how much of the project's code have been tested.
Check for use of a unit testing framework (JUnit for example).

Example:

None

Page 279

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1280
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1411
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119

Part 5: Developer Guidance

G1308

Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS) 140-2
certified cryptographic module.

Rationale:

The guidance defines the application types required to support DoD class 3 PKI.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

NESI / Part 2: Traceability / DISR Service Areas / Operating System Services / Software Security / Technologies and
Standards for Implementing Software Security / Public Key Infrastructure (PKI) and PK Enable Applications

NESI / Part 2: Traceability / DISR Service Areas / Security Services / Software Security / Technologies and
Standards for Implementing Software Security / Public Key Infrastructure (PKI) and PK Enable Applications

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Software Security / Technologies and Standards
for Implementing Software Security / Public Key Infrastructure (PKI) and PK Enable Applications

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Data and Services Deployment / Enable Trust / Public Key Infrastructure (PKI) and PK Enable
Applications

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Secured Availability / Provide Data in Transit and Data at Rest Protection / Software Security /
Technologies and Standards for Implementing Software Security / Public Key Infrastructure (PKI) and PK Enable
Applications

NESI / Part 2: Traceability / DoD Information Enterprise Architecture / DoD Information Enterprise Architecture
Activities / Provide Computing Infrastructure Readiness / Provide Computing Infrastructure Controls / Technologies
and Standards for Implementing Software Security / Public Key Infrastructure (PKI) and PK Enable Applications
NESI / Part 5: Developer Guidance / Software Security / Technologies and Standards for Implementing Software
Security / Public Key Infrastructure (PKI) and PK Enable Applications

NESI / Part 2: Traceability / Naval Open Architecture / Maintainability

NESI / Part 2: Traceability / Naval Open Architecture / Interoperability

NESI / Part 2: Traceability / ASD(NII): Net-Centric Guidance / Information Assurance/Security / Design Tenet:
Identity Management, Authentication, and Privileges

NESI / Part 2: Traceability / Exposure Verification Tracking Sheets / Service Exposure Verification Tracking Sheet /
Service Accessibility - Policy / Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:
1) Test:

Is the application using an approved Federal Information Processing Standard (FIPS) 140-2 cryptographic module?

Procedure:
Check the cryptographic module to see if it is FIPS 140-2 compliant.

Example:

None

Page 280

https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1370
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1362
https://nesi.spawar.navy.mil/nesix//View/P1371
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1401
https://nesi.spawar.navy.mil/nesix//View/P1408
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1409
https://nesi.spawar.navy.mil/nesix//View/P1419
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1399
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1400
https://nesi.spawar.navy.mil/nesix//View/P1423
https://nesi.spawar.navy.mil/nesix//View/P1426
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1119
https://nesi.spawar.navy.mil/nesix//View/P1288
https://nesi.spawar.navy.mil/nesix//View/P1279
https://nesi.spawar.navy.mil/nesix//View/P1281
https://nesi.spawar.n